The Electric Dipole Moment of the Neutron as a Probe of New Physics

Thomas Mannel

Theoretische Physik I Universität Siegen

Protoroz 2013, 18.4.2013

The results shown here were achieved in collaboration with Nikolay "Kolya" Uraltsev (arXiv:1202.6270 and arXiv:1205.0233)

Kolya deceased suddenly and unexpectedly in the morning of 13.2.2013 This talk is also in commemoration of him ...

2 Electric Dipole Moment of the Neutron

- Generalities
- Electric Dipole Moments in the Standard Model
- New Physics Effects in the Neutron EDM

Introduction

- Electric Dipole moments (EDMs) are CP violating
- It tests flavour-diagonal CP violation
- This is small in the Standard Model (SM):
 - CKM CP violation is flavour changing at tree level
 - Strong CP is small for yet unknown reasons
- EDMs are important as test for new physics:
 - Many models predict new sources of CP violation
 - ... some of which are flavour diagonal at tree level
 - EDMs are the killer for many new physics models
- However, we need more CP violation for the universe

< 🗇 🕨

★ E ► ★ E ►

Introduction Genera Electric Dipole Moment of the Neutron Outlook New Pt

Generalities Electric Dipole Moments in the Standard Model New Physics Effects in the Neutron EDM

Electric Dipole Moments: Generalities

• Electric dipole moments in classical physics

$$ec{d} = \int d^3ec{r} \;
ho(ec{r})ec{r} \;\;$$
 Energy: $U = ec{d} \cdot ec{E}$

• Quantum Field theory: States are characterized by momentum \vec{p} and Spin \vec{J} : \vec{d} must be proportional to \vec{J}

$$U = d \, \vec{J} \cdot \vec{E}$$

- *d* must be parity odd:
 - P Violation (and also T Violation) \rightarrow CP violation

Generalities Electric Dipole Moments in the Standard Mode New Physics Effects in the Neutron EDM

・ロト ・ 日本・ ・ 日本・

EDM's of particles

Electromagnetic interaction with the EDM of a fermion:

$$\mathcal{L}_{ ext{EDM}} = rac{d}{2} ar{\psi} i \sigma_{\mu
u} \gamma_5 \psi \, \pmb{F}^{\mu
u}$$

- This is flavour diagonal and a static quantity
- This also holds for a composite particle such as a neutron
- Current status of measurements:
 - For the electron: $d_e < 10.5 \times 10^{-28}$ e cm
 - For the neutron: $d_N < 0.29 \times 10^{-25}$ e cm
- There are plans to improve this (in particular for the nucleon) by orders of magnitude.

Generalities Electric Dipole Moments in the Standard Model New Physics Effects in the Neutron EDM

Only a few words about "Strong CP"

• The QCD Vacuum generates a (CP violating) θ term:

$$\mathcal{L}_{ ext{strong CP}} = heta \, rac{lpha_s}{8\pi} G^{\mu
u,a} ilde{G}^a_{\mu
u}$$

- Natural size would be $\theta \sim 1$
- θ can be rotated away by an additional symmetry
- Limit from Neutron EDM:

$$d_N \sim \theta \times 10^{-15} \mathrm{e\,cm}$$
 thus $\theta \leq 10^{-10}$

- This is one of the puzzles of the SM
- We assume in what follows that $\theta \equiv 0$.

Generalities Electric Dipole Moments in the Standard Model New Physics Effects in the Neutron EDM

프 (프) -

æ

EDMs from the CKM Sector

• Any CP violation in the SM is proportional to

 $\Delta = \operatorname{Im} \textit{V}^*_{\textit{cs}}\textit{V}_{\textit{us}}\textit{V}_{\textit{cd}}\textit{V}^*_{\textit{ud}}$

- There is only a single 4th order rephasing invariant
- Standard Model without Strong CP: *d* must be proportional to Δ!
- Thus we have two W exchanges.
- For an elementary fermion this is at least two loops:

 Introduction
 Generalities

 Electric Dipole Moment of the Neutron Outlook
 Electric Dipole Moments in the Standard Model

- However, sum of all the two-loop diagrams vanishes for quark edm's → need another (gluon) loop Shabalin 78
- Result for *d* quark (similar for the up qark)

$$d_d = e \, rac{m_d lpha_s G_F^2 m_c^2 \Delta}{108 \pi^5} \left[\ln^2 rac{m_b^2}{m_c^2} \ln rac{M_W^2}{m_b^2} + ..
ight] \sim -0.3 imes 10^{-34}
m e \
m cm$$

Khiplovich 86, Czarnecki, Krause 97

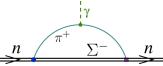
Naive composition of the Neutron edm:

$$d_N = rac{4}{3} d_d - rac{1}{3} d_u \sim 10^{-34} {
m e~cm}$$

This is too small, neutron is a composite object.

ヘロト ヘ戸ト ヘヨト ヘヨト

Generalities Electric Dipole Moments in the Standard Model New Physics Effects in the Neutron EDM


Composite Objects: Neutron EDM

Well known fact: There are long distance effects:

• Penguin Operators: $d \rightarrow s$ transitions (with CPV)

$$\mathcal{H}_{ ext{Pen}} \propto rac{G_{ extsf{F}}}{\sqrt{2}} rac{lpha_{ extsf{s}}}{3\pi} \sum_{q} (ar{ extsf{s}} ar{ extsf{\Gamma}}_{\mu} T^{ extsf{a}} d) (ar{ extsf{q}} ar{ extsf{T}}^{\mu} T^{ extsf{a}} q)$$

• "Long distance strangeness"t: (Gavela et al., 82, Khriplovich et al, 82)

- Estimates much larger than the EDM's of the constituents
- Still there is a loop suppression in the penguins

Generalities Electric Dipole Moments in the Standard Model New Physics Effects in the Neutron EDM

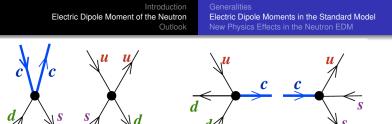
"Loop-less" EDM's Uraltsev, M

Systematic Study:

- Start from the effective Hamiltonian *H_W* for weak interactions below *M_W*:
- *H_W* is bi-linear in the CKM elements: CP violation will be second order in *H_W*

$$\mathcal{L}_2 = i \frac{G_F^2}{4} \int d^4 x \, \mathrm{T} \left\{ H_W(x) H_W(0) \right\}$$

• In the nucleon top and bottom are irrelevant: At tree level this means to leave them out.


$$H_W = J^{\dagger}_{\mu} J^{\mu} , \ J_{\mu} = V_{cs} \, \bar{c} \Gamma_{\mu} s + V_{cd} \, \bar{c} \Gamma_{\mu} d + V_{us} \, \bar{u} \Gamma_{\mu} s + V_{ud} \, \bar{u} \Gamma_{\mu} d$$
with $\Gamma_{\mu} = \gamma_{\mu} (1 - \gamma_5)$

- This looks almost like the two-generation case, however, the remaining 2 × 2 matrix V_{ij} is not unitary, not all phases can be removed.
- In particular:

$$\Delta = \operatorname{Im} V_{cs}^* V_{cd} V_{ud}^* V_{us} \neq 0$$

- *L*₂ contains 256 terms, 64 are flavour neutral. Only two combinations proportional to Δ (or its complex conjugate)
- These have q and \bar{q} for each flavor.

ヘロン ヘアン ヘビン ヘビン

Left: close the charm loop, conventional penguin
Right diagram: Integrate out highly virtual charm:

$$rac{iG_F^2}{2}V_{cs}^*V_{cd}V_{ud}^*V_{us} imes \ \int d^4x\,\mathrm{T}\{(ar{d}\Gamma_\mu oldsymbol{c})(ar{u}\Gamma^\mu d)(0)\,(ar{oldsymbol{c}}\Gamma_
u oldsymbol{s})(ar{s}\Gamma^
u u)(x)\}+h.c.$$

Charm Propagator

$$\underbrace{c(0)\bar{c}(x)}_{0x} \rightarrow \left(\frac{1}{m_c - i\not p}\right)_{0x} \xrightarrow{(a)}_{x} \xrightarrow{(a)$$

• Expansion of the charm propagator: $1/m_c$ expansion $\left(\frac{1}{m_c - i\mathcal{D}}\right)_{0x} = \frac{1}{m_c}\delta^4(x) + \frac{1}{m_c^2}\delta^4(x)i\mathcal{D} + \frac{1}{m_c^3}\delta^4(x)(i\mathcal{D})^2 + \cdots$

Left handed currents of the SM: only 1/m²_c, 1/m⁴_c ...
Thus in a 1/m_c expansion:

$$egin{aligned} \mathcal{L}_2^{CPV} &= -i rac{G_F^2 \Delta}{2 m_c^2} \mathcal{O}_{uds} \ \mathcal{O}_{uds} &= (ar{u} \Gamma_\mu d) (ar{d} \Gamma^\mu i ar{D} \Gamma^
u s) (ar{s} \Gamma_
u u) - h.c. \end{aligned}$$

- No loops, no $1/(16\pi^2)$ supressions
- However, a local dim-10 operator appears ...

くロト (過) (目) (日)

• The covariant derivative contains a photon:

$$O_{uds}^{\alpha} = (\bar{u}\Gamma_{\mu}d)(\bar{d}\Gamma^{\mu}i\gamma^{\alpha}\Gamma^{\nu}s)(\bar{s}\Gamma_{\nu}u) - (s\leftrightarrow d)$$

 from this we get the overall electromagnetic current relevant for EDM's

$$\mathcal{L}^{\alpha} = -ie\Delta \frac{G_{F}^{2}}{m_{c}^{2}} \left[\frac{2}{3} O_{uds}^{\alpha} + i \int d^{4}x \, \mathrm{T} \{ \mathcal{O}_{uds}(0) J_{\mathrm{em}}^{\alpha}(x) \} \right]$$

• The matrix element between neutron states yields

$$\langle n(p+q) | \mathcal{L}^{\alpha} | n(p) \rangle \stackrel{q \to 0}{=} d_n q_{\nu} \overline{u}(p+q) i \sigma^{\alpha \nu} \gamma_5 u(p)$$

ヘロン 人間 とくほ とくほ とう

1

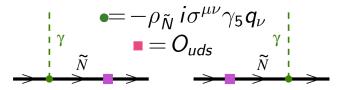
Generalities Electric Dipole Moments in the Standard Model New Physics Effects in the Neutron EDM

How to estimate the matrix elements

Local piece

 $\langle n(p+q)|O_{uds}^{lpha}|n(p)
angle = 2i\mathcal{K}_{uds}q_{
u}\bar{n}(p+q)i\sigma^{lpha
u}\gamma_{5}n(p)$

- Estimating \mathcal{K}_{uds} is difficult:
 - Naive estimate by dimensions: $\mathcal{K}_{uds} \approx \kappa \mu_{hadr}^5$
 - $\kappa \sim 0.3$ for the suppression of strangeness
 - $\mu \sim$ 0.5 GeV, but this probably overestimates


 $\langle \bar{q}q
angle pprox -(250\,{
m MeV})^3$ yet $\langle \bar{q}({\it iD})^2q
angle pprox -(650\,{
m MeV})^2 \langle \bar{q}q
angle$

hence we write a factor of μ_q^3 = (250 MeV)³ for each $\bar{q}q$ pair, remaining dimensions from $\mu_{\rm hadr} \sim$ 500 MeV

• Thus form the local term we get

$$|d_n| = \frac{32}{3}e\frac{G_F^2\Delta}{m_c^2}|\mathcal{K}_{uds}| = 3.3 \cdot 10^{-31}e\,\mathrm{cm} \times \kappa \left(\frac{\mu_q}{0.25\,\mathrm{GeV}}\right)^6 \left(\frac{0.5\,\mathrm{GeV}}{\mu_{\mathrm{hadr}}}\right)$$

- Introduction Generalities
 Electric Dipole Moment of the Neutron
 Outlook New Physics Effects in the Neutron EDM
- Non-local term: Estimate with a single intermediate Ñ state

• Coupling $\rho_{\tilde{N}}$ from $\tilde{N} \to n\gamma$: $\rho_{\tilde{N}} \approx 0.34 \,\text{GeV}^{-1}$

$$|d_n| pprox 32e rac{G_F^2 \Delta}{m_c^2} \kappa \mu_q^6 \mu_{
m hadr} rac{
ho_{ ilde{N}}}{M_{ ilde{N}} - M_n} pprox 1.4 \cdot 10^{-31} e\,{
m cm} imes \kappa$$

• Consistent with other (as well crude) estimates

< 🗇 🕨

Generalities Electric Dipole Moments in the Standard Model New Physics Effects in the Neutron EDM

▲ (□) ▶ (▲ 三) ▶ (

Summary on the neutron EDM in the SM

• The loop-less estimate is (order of magnitude)

$$|d_n| = 10^{-31} \, e \, \mathrm{cm}$$

- Short distance loops will be parametrically small by loop factors $1/(16\pi^2)$
- The EDM's of the constituents do not play any role
- Strong CP remains a problem:

$$|d_n| \approx 2.3 \cdot 10^{-16} \, e \, \mathrm{cm} \times \theta$$

• Given the current experimental bound:

$$|d_n| \le 2.9 \cdot 10^{-26} \, e \, \mathrm{cm} \quad (90\% CL)$$

 Introduction
 Generalities

 Electric Dipole Moment of the Neutron
 Electric Dipole Moments in the Standard Model

 Outlook
 New Physics Effects in the Neutron EDM

- $1/m_c$ suppression is present in the OPE, however, this is mild $p/m_c \sim 0.5$
- Similar Effects in *B* decays: "Intrinsic charm" (Bigi et al. 2003, Zwicky et al. 2005, M. et al, 2010
- V A Structure yields an additional factor of p/m_c
- The loop-less contribution may as well be the dominant one!
- There are issues conceding the mass dependence, chiral limit, the limit m_s → m_d etc.
- "SM minimizes the EDM of the neutron"

イロト 不得 とくほ とくほ とうほ

New Physics Effects in the Neutron EDM

Motivated by the LHCb measurements of

$$\Delta a_{
m CP} = \mathcal{A}_{
m CP}(D^0 o K^+ K^-) - \mathcal{A}_{
m CP}(D^0 o \pi^+ \pi^-)$$

we consider CP violating operators for $\Delta C = \pm 1$:

$$O_{1} = em_{c}\bar{c}\,i\sigma_{\alpha\beta}F^{\alpha\beta}\gamma_{5}u\,,\,O_{3} = [\bar{c}\Gamma_{\mu}u]([\bar{s}\Gamma^{\mu}s] + [\bar{d}\Gamma^{\mu}d]),\\O_{2} = g_{s}m_{c}\bar{c}\,i\sigma_{\alpha\beta}G^{\alpha\beta}\gamma_{5}u\,,\,O_{4} = (\bar{c}\gamma_{\mu}(1+\gamma_{5})u)\,(\bar{d}\gamma^{\mu}(1-\gamma_{5})d)$$

and define

$$\mathcal{L}_{\mathrm{np}} = -rac{G_F}{\sqrt{2}}\sin heta_C\cos heta_C\sum_k c_kO_k,$$

Unfortunately, this effect has almost disappeared.

- Some of the operators contain right handed quarks: This can lift the helicity suppression
- Crude estimate of the matrix elements based on the 2012 data:

	$-i\langle \pi^+\pi^- O_k D^0 angle$	$ \sin \delta_{\scriptscriptstyle FSI} Im c_k $	$d_n, e \cdot cm$	
O_1	$8\sqrt{2}\pilpha \ q_d \ f_\pi f_+^{D ightarrow\pi}(0) M_D^2$	$5.2 \cdot 10^{-2}$	$2 \cdot 10^{-27}$	
<i>O</i> ₂	$4\pi g_s \sqrt{3} f_\pi f_+^{D ightarrow \pi}(0) M_D^2$	$1.0 \cdot 10^{-4}$	8·10 ⁻³⁰	$3 \cdot 10^{-30}$
	$-f_{\pi}f_{+}^{D\! ightarrow\pi}(0)M_{D}^{2}$	$2 \cdot 10^{-3}$	10^{-30}	
<i>O</i> ₄	$f_{\pi}f_{+}^{D \rightarrow \pi}(0)M_D^2 \frac{1}{N_c} \frac{2m_{\pi}^2}{(m_u+m_d)m_c}$	$4.6 \cdot 10^{-3}$	$5 \cdot 10^{-30}$	

ヘロト 人間 ト ヘヨト ヘヨト

æ

....

ヘロン 人間 とくほ とくほ とう

3

Estimates for the additional effects:

•
$$O_1 = e m_c \bar{c} i(\sigma F) \gamma_5 u$$
: $d_n \sim 10^4 d_n^{(SM)}$
• $O_2 = g_s m_c \bar{c} i(\sigma G) \gamma_5 u$: $d_n \sim 30 d_n^{(SM)}$ (right handed c)
• $O_3 = [\bar{c} \Gamma_{\mu} u] ([\bar{s} \Gamma^{\mu} s] + [\bar{d} \Gamma^{\mu} d])$: $d_n \sim 10 d_n^{(SM)}$
• $O_4 = (\bar{c} \gamma_{\mu} (1 + \gamma_5) u) (\bar{d} \gamma^{\mu} (1 - \gamma_5) d)$: $d_n \sim 50 d_n^{(SM)}$

The current experimental limits are safe w/r to charm CPV

Outlook

- The neutron EDM remains one of the most stringent constrains on flavor diagonal CPV form New Physics
- ... although a precise prediction in the SM remains difficult due to the unknown hadronic matrix elements
- The "loop-less" contribution could turn out to be the most important one
- ... although it is difficult to estimate.
- The experimental limit is still several orders of magnitude away from the SM prediction
- ... despite of the uncertainties.
- There is a good motivation to improve the limits on the neutron EDM