Composite t' triplets from QCD-like dynamics and $t\bar{t}$ asymmetries

Joachim Brod

in collaboration with Jure Drobnak, Alexander L. Kagan, Emmanuel Stamou, Jure Zupan

Probing the Standard Model and New Physics at Low and High Energies Portoroz, April 17, 2013

Introduction

Gregory: "Is there any other point to which you would wish to draw my

attention?"

Holmes: "To the curious incident of the dog in the night-time."

Gregory: "The dog did nothing in the night-time."

Holmes: "That was the curious incident."

[Arthur Conan Doyle, "Silver Blaze"]

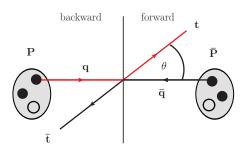
Introduction

Gregory: "Is there any other point to which you would wish to draw my

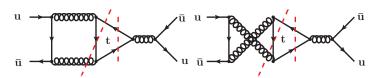
attention?"

Holmes: "To the curious incident of the t's at colliders."

Gregory: "The t's have not been seen at colliders."


Holmes: "That was the curious incident."

[based on Arthur Conan Doyle, "Silver Blaze"]


Outline

- Situation
- Flavor-symmetric models
- Strong-interaction realization
- Preliminary results

A_{FB} in the standard model

Asymmetry arises at NLO QCD from real and virtual gluons:

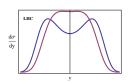
Standard-model predictions

$$A_C^{\mathsf{exp}} = rac{\sigma(\Delta y > 0) - \sigma(\Delta y < 0)}{\sigma(\Delta y > 0) + \sigma(\Delta y < 0)}$$

Tevatron:

$$A_C^{
m exp} = A_{FB}^t \qquad \Delta y = y_t - y_{ar t} \qquad A_C^{
m TEV} = (7.16^{+1.05}_{-0.68})\% imes 1.22_{
m EW}$$

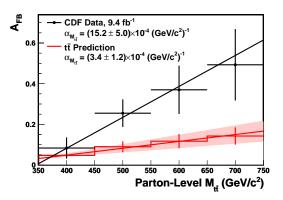
[Ahrens et al., arxiv:1106.6051; Hollik, Pagani, arxiv:1107.2606]


• LHC:

$$A_C^{\text{exp}} = A_C^{|y|}$$
 $\Delta y = |y_t| - |y_{\bar{t}}|$

$$A_C^{\rm LHC7} = (1.15 \pm 0.06)\%$$

[Kühn, Rodrigo, arxiv:1109.6830]

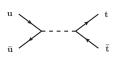

[Ahrens et al., arxiv:1212.5859]

Measurements - Tevatron

Inclusive parton level

$$A_{FB} = \frac{N(y_t > y_{\bar{t}}) - N(y_t < y_{\bar{t}})}{N(y_t > y_{\bar{t}}) + N(y_t < y_{\bar{t}})} = [17.4 \pm 3.8]\%$$

[CDF & D0, naive average]



Measurements – LHC

$$A_C(\ell j) = (0.4 \pm 1.0 \pm 1.1)\%$$
 [CMS, arxiv:1207.0065]
 $A_C(\ell \ell) = (5.0 \pm 4.3^{+1.0}_{-3.9})\%$ [CMS, PAS-TOP-12-010]
 $A_C(\ell j) = (-1.9 \pm 2.8 \pm 2.4)\%$ [ATLAS, arxiv:1203.4211]
 $A_C(\ell \ell) = (5.7 \pm 2.4 \pm 1.5)\%$ [ATLAS-CONF-2012-057]

A_{FB} in models of new physics

- Need interference between NP and SM [Grinstein et al., arxiv:1102.3374]
- Favored scenarios:
 - s-channel: color-octet vector with axial couplings
 - t-channel: color singlet, or colored resonances (Rutherford peak: t-channel propagator $\propto 1/[2E^2(1-\cos\theta)+M^2]$)

t-channel models:

- vectors with mass of a few hundred GeV yield large A_{FB} , increasing with $M_{t\bar{t}}$ [Jung et al., arxiv:0907.4112]
- At the same time good agreement with measured spectrum at large $M_{t\bar{t}}$ [Gresham et al., arxiv:1103.3501]

Flavor symmetric models

Look at NP models which are invariant under global

$$G_F = U(3)_{Q_L} \times U(3)_{u_R} \times U(3)_{d_R}$$

Or subgroup

$$H_F = U(2)_{Q_L} \times U(2)_{u_R} \times U(2)_{d_R} \times U(1)^3$$

Flavor symmetric models that

- \bullet do not contain breaking of G_F (or H_F) beyond SM Yukawas
- \bullet contain new fields in nontrivial representations of G_F or H_F
- have $\mathcal{O}(1)$ couplings to top and light quarks

can avoid

• like-sign top or single top production, FCNCs, e.g., $D^0 - \bar{D}^0$ mixing while still accounting for A_{FB} . [Grinstein et al., arxiv:1108.4027]

Strong interaction realization

- New confining $SU(N)_{HC}$ "hypercolor" gauge interaction
- Naturally translate a UV symmetry to the u_R sector
- Use QCD as a prototype
- Scale $\Lambda \approx 300 \text{GeV}$
- $SU(2)_L$ singlet, vectorlike $SU(3)_{U_R}$ or $(SU(2) \times U(1))_{U_R}$ flavor triplet of hypercolor quarks $(\omega_{L_i}, \omega_{R_i})$, flavor singlet hypercolor scalar S

Transforms under
$$SU(N)_{HC} \times SU(3)_C \times SU(2)_L \times U(1)_Y$$
 as

$$\omega_{L_i,R_i}(N,1,1,a), \quad S(\bar{N},3,1,b), \quad a+b=2/3 \text{ (choose)}$$

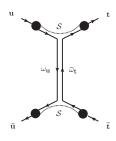
$$\mathcal{L}_{\text{NP}} = (h_{ij}\bar{u}_{R,i}\,\omega_{L,j}\,\mathcal{S} + \text{H.c.}) + m_{\omega ij}\,\bar{\omega}_i\,\omega_j + m_s^2|\mathcal{S}|^2$$

• Kinetic term has chiral $SU(3)_L \times SU(3)_R$ symmetry (as in QCD)

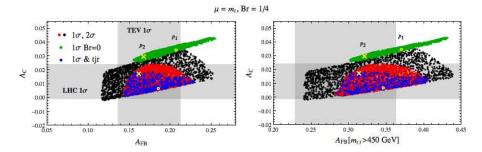
Setup

- $h = diag(h_1, h_1, h_3), m_{\omega} = diag(\mu_1, \mu_1, \mu_3).$
- Take $\mu_1 \sim \mu_3 \ll \Lambda$, like u, d, s in QCD
- Think of as " $(u, d, s) \leftrightarrow (\omega_u, \omega_c, \omega_t)$ "
- Hypercolor sector only couples to right-handed quarks due to choice of representations for ω , S.
- To be specific, take N=3, a=0 (hypercolor quarks have no charge).

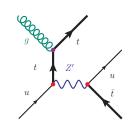
Effective theory

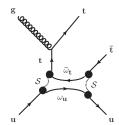

- ullet Spontaneous symmetry breaking o octet of massless goldstone bosons (as in QCD)
- (Hyper-)quark masses break symmetry explicitly ⇒ small nonvanishing Goldstone-boson masses
- Construct effective chiral Lagrangian for Goldstone bosons
- Include resonances

Physical particle content:

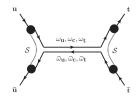

- HC pion octet $\pi_{\mathrm{HC}}^{\mathrm{a}}[\bar{\omega}\omega]$; singlet η_{HC}'
- Lowest HC resonance nonets: $\rho_{\rm HC}^a[\bar{\omega}\omega]$ vector, $a_{1,{\rm HC}}^a[\bar{\omega}\omega]$ axial vector, . . .
- Composite quarks $u_i'[S\omega_i]$
- Color octet vector $V_{\mu}^{o}[S^{*}S]$, color singlet vector $V_{\mu}^{s}[S^{*}S]$

A_{FB} from t-channel exchanges


- flavor triplet of weak singlet vectorlike up-quarks $u'[S\omega_u]$, $c'[S\omega_c]$, $t'[S\omega_t]$
- Yukawa couplings $h_i \bar{u}_{R,i} \omega_{L,i} S$ induce mixing with SM RH up quarks
- K_{HC}^* t-channel exchange contributes to A_{FB} .



$A_{\mathcal{C}}$ from associate production

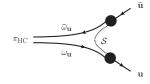

See talk by Jure Drobnak yesterday [Drobnak et al., arxiv:1209.4872]

A_{FB} from s-channel exchanges

- $\psi_{\text{HC}}^8 = (\omega_u \bar{\omega}_u + \omega_c \bar{\omega}_c 2\omega_t \bar{\omega}_t)/\sqrt{6}$ and $\psi_{\text{HC}}^1 = (\omega_u \bar{\omega}_u + \omega_c \bar{\omega}_c + \omega_t \bar{\omega}_t)/\sqrt{3}$ could contribute in s-channel
- Contribution to A_{FB} vanishes for "ideal mixing": $\Omega_{HC} = (\omega_u \bar{\omega}_u + \omega_c \bar{\omega}_c)/\sqrt{2}$ and $\Phi_{HC} = \omega_t \bar{\omega}_t$

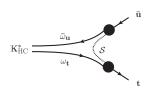
Physical parameters

$$\Lambda_{HC} \approx 300 \, \text{GeV}$$

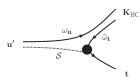

- Get couplings, decay constants, etc. essentially by naive scaling from QCD
- ullet E.g. $M_{\pi_{
 m HC}} \propto rac{\Lambda_{
 m HC}}{\Lambda_{
 m QCD}} \, 2 m_{\omega_1}$

Resonance masses and mixing angle à la [Cheng & Shrock, arxiv:1109.3877]:

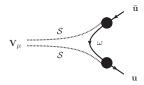
- Fit expressions for QCD meson masses in simple quark model to observed vector meson masses, in dependence of quark masses
- Determine mixing angle, meson masses for general quark mass dependence
- Scale up to Λ_{HC}
- E.g. $M_{\rho_{HC}} = \mu^{HC} (E^{HC} + 2m_{\omega_1})$


HC pions

- Goldstones: $M_{\pi}, M_{\rho} \sim 100 \, \text{GeV}$
- Main decay channel into jets
- K_{HC}s can be long-lived
 - can they be seen in pixel detectors?


HC ρ s

- $M_{\rho}, M_{K^*} \sim 200 \, \text{GeV}$
- Main decay channel into HC pions
- Enhance branching ratio $K^* \to \bar{u}t$ for associate production of t


HC quarks

- Heavier than ρ , K^* because of S contribution: $m_{u'} \sim 700 \, \text{GeV}$
- They decay via $u' \rightarrow \pi^a + t$
- \bullet $~\Gamma/M\approx 100\%,$ compare with $\approx 1\%$ for the top quark

HC vectors

- Naturally heavy because of ${\cal S}$ contribution: $M_{V} \sim 1300\,{
 m GeV}$
- Helps to avoid a bump in $t\bar{t}$ cross section!
- Decays dominantly into u, u'
- Very broad!, $\Gamma/M \approx 50\%$

Preliminary Benchmark

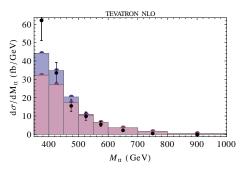
UV input: $\Lambda_{HC}=178 {\rm GeV},~m_{\omega_u}=3.7 {\rm GeV},~m_{\omega_t}=20.2 {\rm GeV},~m_{\mathcal{S}}=520 {\rm GeV},~h_1=1,~h_3=1.5,~{\rm plus}~{\rm ``fudge~factors''}~{\rm of}~\mathcal{O}(1)~{\rm for~scaling~(here~all~equal~1)}$

HC resonance	mass	decay width
π	68 GeV	$10^{-6} m_{\pi}$
K	123 GeV	$pprox 10^{-7} m_K$
η	137 GeV	$pprox 10^{-7} m_\eta$
ρ	185 GeV	$0.1M_{ ho}$
K^*	207 GeV	$pprox 0 M_{K^*}$
Ф	188 GeV	$pprox 0 M_{\Phi}$
Ω	227 GeV	$pprox 0 M_{\Omega}$
a_1, K_1, \dots	\sim 350 GeV	$(0.1-0.5)M_{a_1}$
u_i', \dots	\sim 700 GeV	$pprox m_{u_i'}$
V_o	1302 GeV	$0.4M_{V_o}$
V_s	1302 GeV	$0.4M_{V_s}$

$\cos \theta_{R,1}$	\approx	0.96
$\cos \theta_{R,3}$	\approx	0.92
$\cos\theta_{L,1}$	\approx	1
$\cos \theta_{L,3}$	\approx	0.995
$\kappa(ho)_R$	\approx	0.56

Resulting A_{FB} from benchmark

Parton level $M_{t\bar{t}}$ [GeV]	$A_{FB}(stat.)(syst.)$	NLO (QCD + EW)
< 450	0.078(54)	0.062(4)
≥ 450	0.296(67)	0.129(7)
inclusive	0.174(38)	0.088(6)


Table: Tevatron measurements [arxiv:1211.1003]

Parton level $M_{t\bar{t}}$ [GeV]	A_{FB}
< 450	0.139
≥ 450	0.297
inclusive	0.162

Table: A_{FB} from our preliminary benchmark

Differential $t\bar{t}$ cross section

- ullet Blue o SM
- Purple \rightarrow SM + NP
- Black dots → Tevatron measurement

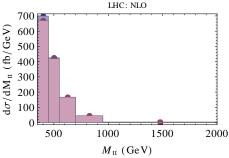


Figure: Tevatron

Figure: LHC @ 7TeV

Summary and outlook

- Large Tevatron AFB can be explained by NP
- Hypercolor model yields natural realization of NP models with flavor symmetry
- Check more collider constraints: dijets, t jet resonances, jet multiplicities, . . .
- Find LHC signatures