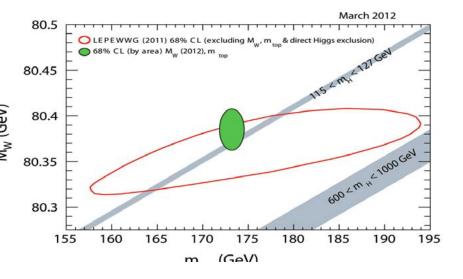
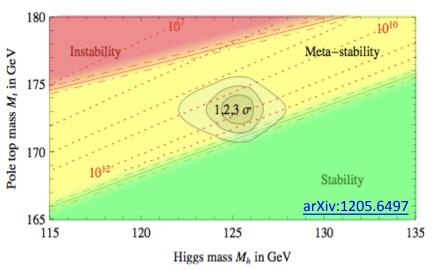
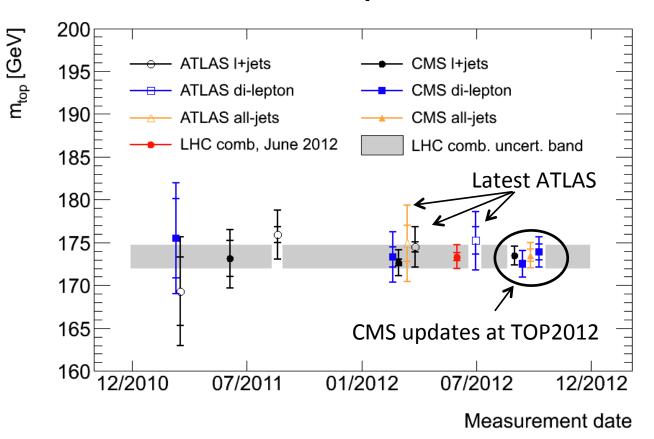
Status of Top Mass (world?) average

Giorgio Cortiana (MPP Munich) & Martijn Mulders (CERN)

for the TOPLHC WG




Open TOPLHC WG Meeting, November 29, 2012


After July 4th 2012...

- The Top quark is still the heaviest known elementary particle!
- Is there a special reason for this?
- The Top mass is *still* an important
 Standard Model parameter
 - worth measuring as precisely as possible
- Interesting (QCD) Puzzle: how secure is the "color confinement prison"? Compare direct measurements from invariant mass decay products to indirect determination from cross-section

LHC Top Mass: overview

	LHC	
[GeV]	ATLAS	CMS
Stat.	0.6 - 4.0	0.3 - 4.6
Syst.	2.3 - 4.6	1.0 - 4.6
Tot	2.4 - 6.3	1.1 - 6.5
1/		

[min,max] across analyses used in LHC comb or presented at TOP2012

red = presented at TOP2012

- Time evolution of LHC Top mass measurements
- The first (and latest) LHC Top mass combination: June 2012

Latest top mass combinations

LHC Combination (June 2012): $m_{top} = 173.3 \pm 0.5_{stat} \pm 1.3_{syst}$ GeV CMS-PAS-12-001 & ATLAS-CONF-2012-095

Tevatron Combination (2012): $m_{top} = 173.2 \pm 0.6_{stat} \pm 0.8_{syst}$ GeV ... does not include the latest measurement(s) Phys. Rev. D 86, 092003 (2012)

CMS latest (September 2012): $m_{top} = 173.4 \pm 0.4_{stat} \pm 0.9_{syst}$ GeV ... does not include the latest CMS di-lepton measurement CMS-PAS-11-018

- Beautiful agreement in central values
- LHC is starting to reach a precision similar to the Tevatron
- LHC: systematic uncertainties (and correlations) dominant
- None of the combination is fully up-to-date...

Our Home Work

- A better understanding of systematic uncertainties and correlations between ATLAS and CMS is becoming increasingly important
- Currently we are using BLUE with systematics categories similar to the Tevatron combination (for details see talk by Giorgio in previous TOPLHC WG meeting https://indico.cern.ch/event/189617)
- An "ultimate combination" of results would require
 - More refined categories for systematic uncertainties in BLUE
 - Better understanding of the values of the systematic uncertainties
 - Better understanding of the correlations to put in
- More harmonisation between ATLAS and CMS is needed (see talks about JetMET and Radiation systematics today)
- Also proposing an improved presentation of BLUE results (see talk by Andrea Valassi today)

ATLAS and CMS signal modeling Systematics

	ATLAS	CMS
PDF	CTEQ6.6	MSTW08/ CTEQ6.6 / NNPDF2.0
Unc. on m _{top} [GeV]	0.1 - 0.6	0.1 – 0.5

	MC@NLO/	Madgraph/PowHeg/Alpgen
MC generator	PowHeg	0.04 GeV,di-lepton and l+jets (only quoted for di-lepton)
Unc. on m _{top} [GeV]	0.3 – 1.3	<0.1 – 0.4

Hadronization	Powheg Pythia/Herwig	(considered only in the JES syst determination)
Unc. on m _{top} [GeV]	0.2 - 0.9	

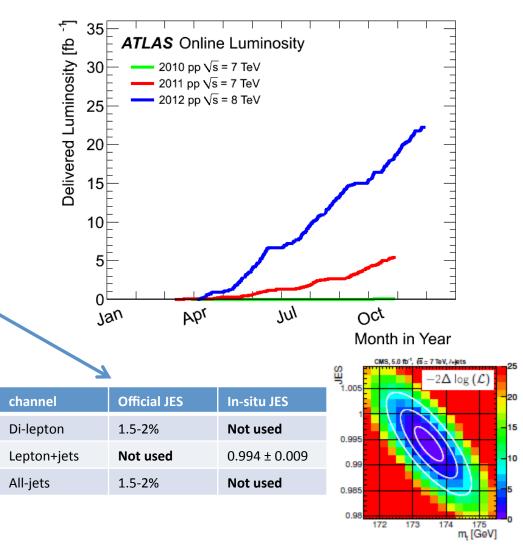
UE tune	Varying Pythia tunes	
Unc. on m _{top} [GeV]	0.2 - 0.6	0.2 – 1.4

Colour reconnection (CR or noCR)	Pythia Tune A and Perugia variations	Pythia Perugia variations
Unc. on m _{top} [GeV]	0.6 - 1.2	<u>0.1</u> – 0.5

- Some differences in approach – ongoing discussions
- Hadronization: Pythia vs Herwig – quote only as part of JES (CMS), or also applied to whole event (ATLAS)? ... Double counting?
- Radiation: →

 (ultimately) constrain
 from data
- (b-JES) → (ultimately)
 constrain from data
- CR: → drop Tune A; (ultimately) constrain from data?

Scope for significant improvements?

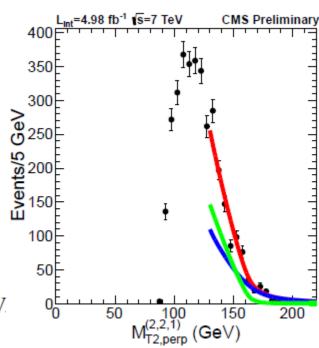

Yes!

- 4x more data on tape
- 2 year to analyze them...
- Improved MC tools arriving
- Current systematics tend to be conservative by necessity *

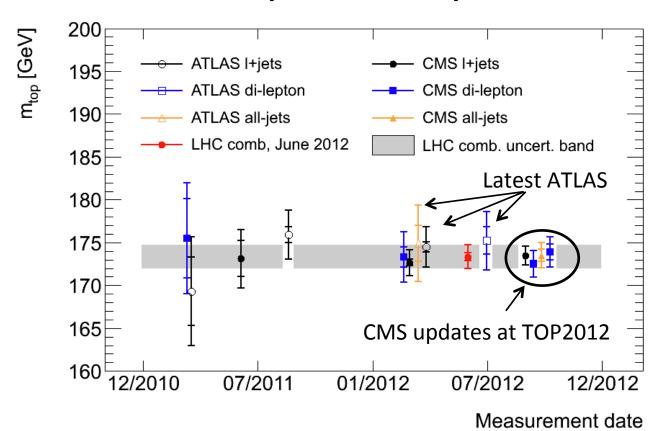
For example in CMS:

- Using pre-calibrated JES scale or in-situ, not both
- B-JES covers perhaps 2x b- vs light-jet difference
- Double-counting UE tune and pile-up (JES and full event)
- Always using max of syst. shift or stat. unc. on it

Similar room for future improvements in ATLAS

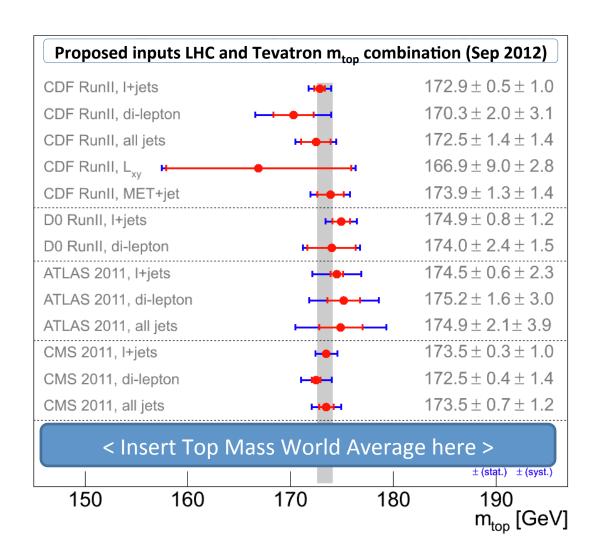


(*) inevitable to err on the side of caution, until more refined treatments are available


Further Food for Thought (& Optimism)

- Another way to reduce the overall uncertainty would be to aim for reduced correlations
- Useful to include less-correlated alternative methods, eg CDF Lxy method, or the ATLAS and CMS M_{T2} di-lepton endpoint methods:
- CMS M_{T2}: no use of MC for calibration and using endpoint. Less precise than standard dilepton analysis, but would give bigger improvement combination
- Should analyses no longer be optimized 'stand-alone', but with the combination in mind?

$$M_t = 173.9 \pm 0.9 \text{(stat)} ^{+1.2}_{-1.8} \text{(syst) GeV}$$


Recap: LHC Top Mass overview

- Time for an updated LHC top mass combination...
- Also working towards a Tevatron + LHC world combination!

Towards a World Combination

- Informal discussion has started between Tevatron and LHC communities
- Proposal for inputs for 1st combination: best measurement per channel / method per experiment (Sep'12)
- Technically straightforward to perform combination
- But first: need formal agreement between the 4 experiments on exact procedure to be followed

Time Line

- The goal is/was to have the first preliminary LHC + Tevatron combination approved as soon as possible by the 4 collaborations
 - Combinations will be performed using the BLUE method
 - Systematic uncertainties will be reviewed and mapped to each other from the different inputs, ensuring a homogeneous treatment
 - Single document approved in 4 collaborations, containing:
 - Individual (updated) combinations for Tevatron and LHC
 - The First preliminary World Average top-quark mass combination
 - Comparisons of the World Average combination per channel
- Moriond 2013: a natural target for the first world combination, including preliminary and published results
- Also prepare combination (only published results) as input for Particle
 Data Group, summer 2013 edition (deadline: Spring 2013) → My opinion:
 very important to provide this, to the best of our current knowledge

Top Mass Combination Summary & Outlook

- The LHC experiments are quickly improving the precision of their top-quark mass measurements.
- Results from ATLAS and CMS show beautiful agreement with existing Tevatron results.
- A good moment for the LHC and Tevatron working groups to combine forces and prepare a top mass world average
- Scope for significant further improvements in LHC top mass measurements. Improved understanding of systematic uncertainties (experimental and theoretical) and correlations will be key
- We are just getting started! Exciting Top Physics years ahead!