Top cross-section @ NNLO

Alexander Mitov Theory Division, CERN

- ✓ Will discuss total inclusive x-section
 - ✓ Useful for normalizations
 - √ Aim at precision

✓ Differential in future work (2013+)

The story of top pair production

✓ Early NLO QCD results (inclusive, semi-inclusive)

Nason, Dawson, Ellis '88 Beenakker et al '89

✓ First fully differential NLO

Mangano, Nason, Ridolfi' 92

√ 1990's: the rise of the soft gluon resummation at NLL

Catani, Mangano, Nason, Trentadue '96 Kidonakis, Sterman '97 Bonciani, Catani, Mangano, Nason `98

✓ NNLL resummation developed (and approximate NNLO approaches)

Beneke, Falgari, Schwinn '09 Czakon, Mitov, Sterman '09 Beneke, Czakon, Falgari, Mitov, Schwinn '09 Ahrens, Ferroglia, Neubert, Pecjak, Yang '10-'11

✓ Electroweak effects at NLO known (small ~ 1.5%)

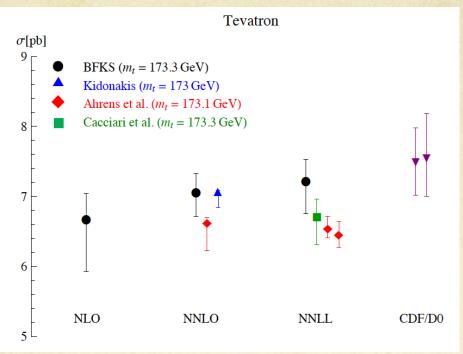
Beenakker, Denner, Hollik, Mertig, Sack, Wackeroth '93 Hollik, Kollar '07

Kuhn, Scharf, Uwer '07


✓ NNLO QCD corrections

Bärnreuther, Czakon, Mitov 12

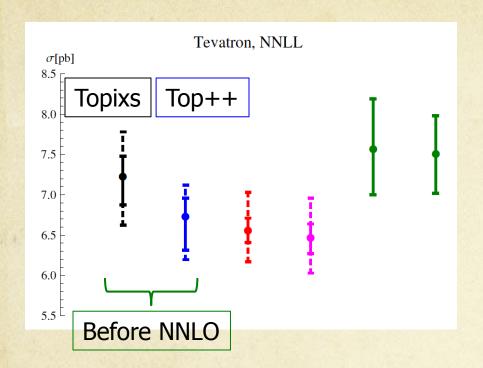
✓ Until 6 moths ago σ_{TOT} analyzed exclusively in approximate NNLO QCD

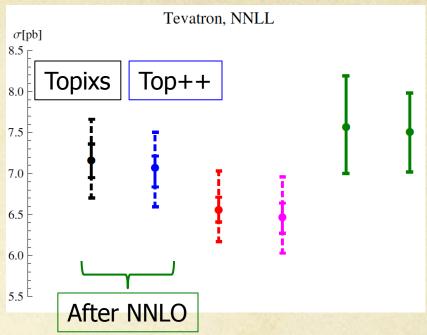

Beneke, Falgari, Klein, Schwinn `09-`11 Ahrens, Ferroglia, Neubert, Pecjak, Yang `10-`11 Kidonakis `03-`11 Aliev, Lacker, Langenfeld, Moch, Uwer, Wiedermann '10 Cacciari, Czakon, Mangano, Mitov, Nason `11

- ✓ To study approx NNLO is theoretically very interesting but is it pheno game changer?
 ✓ No.
- ✓ This should not come as surprise. This was first noticed in 1998 at NLO+NLL

Conclusion: resummed result alone does not approximate the exact NLO very well. additional power suppressed terms are needed.

✓ Indeed, comparison between various NNLO_{approx} groups shows:


Beneke, Falgari, Klein, Schwinn `11


- ✓ Significant differences between various predictions
- ✓ Suggests the true uncertainty of approximate NNLO (originates beyond the approximation)

Cacciari, Czakon, Mangano, Mitov, Nason '11

Here is the proof we understand the physics well

- ✓ It was established that approx NNLO is dominated by unknown NNLO effects, not resummation

 Cacciari, Czakon, Mangano, Mitov, Nason '11
- ✓ The inclusion of the full NNLO proves that (see above): perfect agreement now between different resummations
 - Mellin space resummation with Top++(1.3)
 Current version 1.4 (includes all available NNLO results + resummation)

Czakon, Mitov arXiv:1112.5675

x-space resummation with Topixs

Beneke, Falgari, Klein, Piclum, Schwinn, Ubiali, Yan '12

Towards complete NNLO result

- ✓ First ever hadron collider calculation at NNLO with more than 2 colored partons.
- ✓ First ever NNLO hadron collider calculation with massive fermions.

 \rightarrow Published qQ \rightarrow tt +X

Bärnreuther, Czakon, Mitov 12

Published all fermionic reactions (qq,qq',qQ')

Czakon, Mitov `12

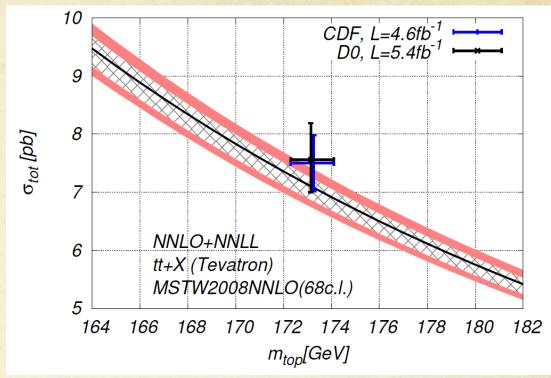
Published gq

Czakon, Mitov `12

- Work on the only remaining reaction gg progressing well:
 - Barring unexpected computing slowdown, sound estimate for gg (if not the full result) should be available within 1 month.

NNLO phenomenology at the Tevatron:

P. Bärnreuther et al arXiv:1204.5201


- √ Independent F/R scales
- ✓ MSTW2008NNLO
- ✓ mt=173.3

NNLO

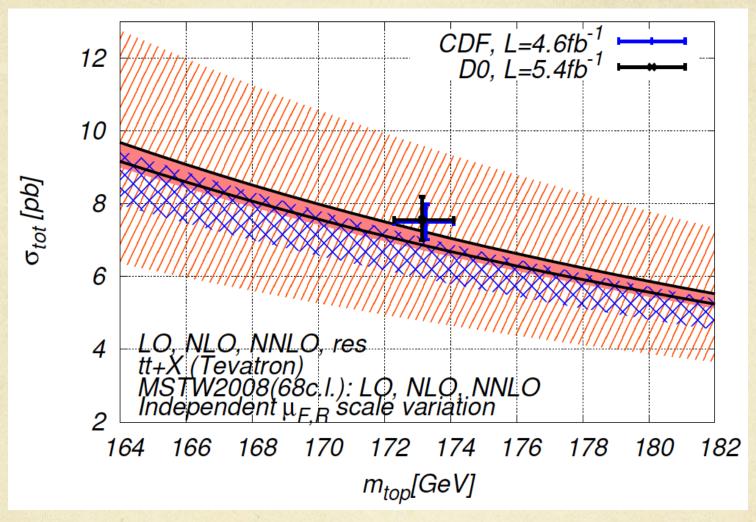
$$\sigma_{\rm tot}^{\rm NNLO} = 7.005 \stackrel{+0.202\,(2.9\%)}{_{-0.310\,(4.4\%)}} \, [{\rm scales}] \stackrel{+0.170\,(2.4\%)}{_{-0.122\,(1.7\%)}} \, [{\rm pdf}]$$

$$\sigma_{\text{tot}}^{\text{res}} = 7.067 \,_{-0.232 \,(3.3\%)}^{+0.143 \,(2.0\%)} \,[\text{scales}] \,_{-0.122 \,(1.7\%)}^{+0.186 \,(2.6\%)} \,[\text{pdf}]$$

Best prediction at NNLO+NNLL

- ✓ Two loop hard matching coefficient extracted and included
- ✓ Very week dependence on unknown parameters (sub 1%): gg NNLO, A, etc.
- √ ~ 50% scales reduction compared to the NLO+NNLL analysis of

Cacciari, Czakon, Mangano, Mitov, Nason '11


$$6.722^{\,+0.238\,(3.5\%)}_{\,-0.410\,(6.1\%)} [scales] ^{\,+0.160\,(2.4\%)}_{\,-0.115\,(1.7\%)} [PDF]$$

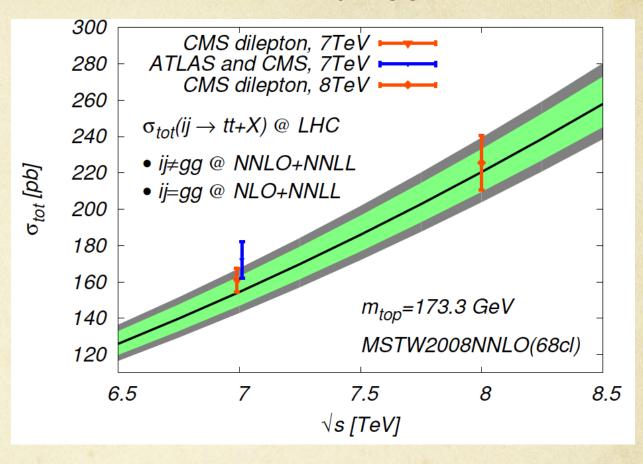
Resumed (approximate NNLO)

Good perturbative convergence:

- ✓ Independent F/R scales
- ✓ mt=173.3

P. Bärnreuther et al arXiv:1204.5201

- ✓ Good overlap of various orders (LO, NLO, NNLO).
- √ Suggests our (restricted) independent scale variation is good



NNLO phenomenology at the LHC:

Czakon, Mitov arXiv:1210.6832

- ✓ Independent F/R scales
- ✓ MSTW2008NNLO
- $\sqrt{\text{mt}}=173.3$

Best prediction at (N)NLO+NNLL

- √ 5% scale uncertainty
- ✓ Good agreement with LHC measurements
- ✓ Clearly, main uncertainty from unknown NNLO gg terms

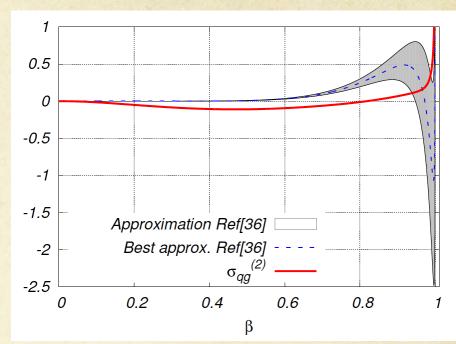
Decrease of scale variation due to currently known NNLO corrections @ LHC:

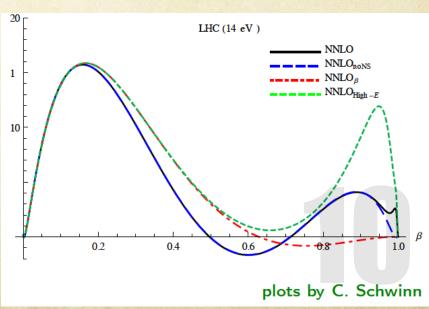
by
$$\pm 1\%$$
 (from qQ)

by
$$\pm 2\%$$
 (from gq)

 \clubsuit An often asked question (recall CMS α_S measurement):

which one of the many theory predictions should we use?


✓ It was suggested to use the high-energy limit of the X-section to predict it everywhere:


Moch, Uwer, Vogt '12

(included in Hathor 1.3 by Aliev et al '10)

- ✓ MUV approximation dramatically deviates from the exact gq NNLO result
- ✓ Leads to large difference for the x-section O(5%) from gq alone!

 Czakon, Mitov arXiv:1210.6832
- √ Similar deviation for qq->tT+X (flux included)

Summary and Conclusions

- ✓ Moving from approximate NNLO to complete NNLO
- ✓ Resummation does improve theory, but alone is not a game changer:
 - Approximate NNLO (in name)
 - Almost NLO+NLL (in predictive power)

- ✓ Besides gg, all partonic reactions known to NNLO.
 - ✓ At Tevatron this is sufficient for full NNLO phenomenology
 - ✓ At LHC 5% non-pdf theory uncertainty.

- ✓ gg will be available very soon O(weeks) + time needed to make it public.
- ✓ Any suggestions about how to make the results more useful will be highly appreciated

Backup slides

Structure of the cross-section

$$\sigma = \frac{\alpha_s^2}{m_t^2} \sum_{ij} \int_0^{\beta_{\text{max}}} \mathcal{L}_{ij}(\beta) \hat{\sigma}(\beta)$$

$$\rho = \frac{4m_t^2}{s} \qquad \beta = \sqrt{1-\rho} \qquad \text{Relative velocity of tT}$$

- ✓ The partonic cross-section computed numerically in 80 points. Then fitted.
- ✓ Many contributing partonic channels:

Computed. Dominant at Tevatron (~85%)

All of the same complexity. No more conceptual challenges expected (just lots of CPU)

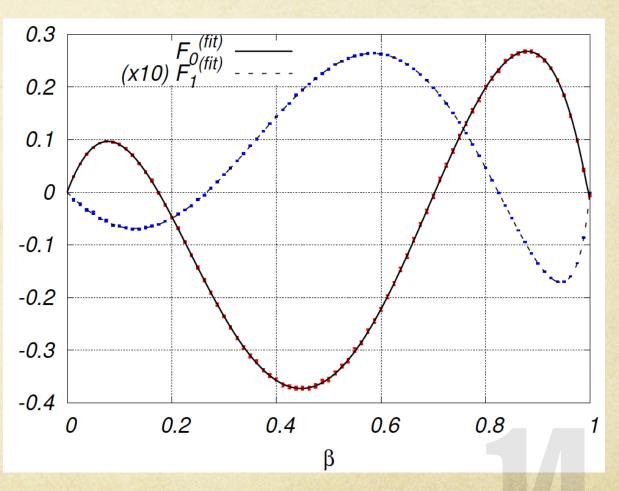
Results @ parton level: qqbar -> ttbar +X

Notable features:

Partonic cross-section through NNLO:

$$\sigma_{ij} \left(\beta, \frac{\mu^2}{m^2} \right) = \frac{\alpha_S^2}{m^2} \left\{ \sigma_{ij}^{(0)} + \alpha_S \left[\sigma_{ij}^{(1)} + L \, \sigma_{ij}^{(1,1)} \right] + \alpha_S^2 \left[\sigma_{ij}^{(2)} + L \, \sigma_{ij}^{(2,1)} + L^2 \sigma_{ij}^{(2,2)} \right] + \mathcal{O}(\alpha_S^3) \right\},$$

The NNLO term:

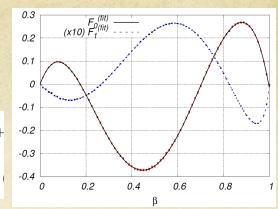

$$\sigma_{q\bar{q}}^{(2)}(\beta) = F_0(\beta) + F_1(\beta)N_L + F_2(\beta)N_L^2$$
 Numeric Analytic

$$F_i \equiv F_i^{(\beta)} + F_i^{(\text{fit})}, i = 0, 1$$

The known threshold approximation

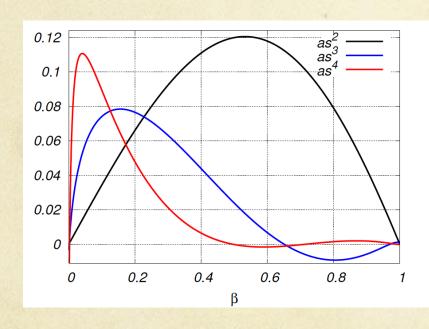
Beneke, Czakon, Falgari, Mitov, Schwinn `09

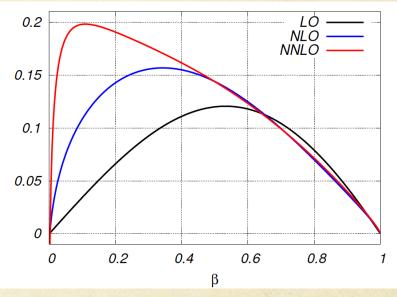
- √ Small numerical errors
- ✓ Agrees with limits



P. Bärnreuther et al arXiv:1204.5201

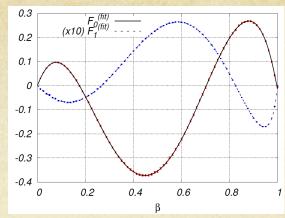
P. Bärnreuther et al arXiv:1204.5201


Results @ parton level: qqbar -> ttbar +X


$$\sigma_{ij}\left(\beta, \frac{\mu^{2}}{m^{2}}\right) = \frac{\alpha_{S}^{2}}{m^{2}} \left\{ \sigma_{ij}^{(0)} + \alpha_{S} \left[\sigma_{ij}^{(1)} + L \sigma_{ij}^{(1,1)}\right] + \begin{array}{c} -0.2 \\ -0.3 \\ -0.4 \\ 0 \end{array} \right\}$$

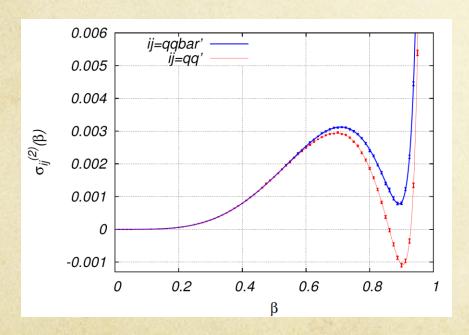
An alternative view of the partonic cross-sections:

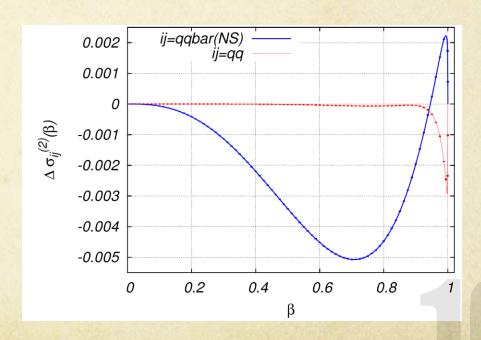
Bärnreuther, Czakon, Mitov `12



$$\hat{\sigma}(\beta) = \frac{\alpha_S^2}{m^2} \left(\sigma^{(0)} + \alpha_S \sigma^{(1)} + \alpha_S^2 \sigma^{(2)} + \ldots \right) \equiv \frac{\alpha_S^2}{m^2} \left(f_{\alpha_S^2} + f_{\alpha_S^3} + f_{\alpha_S^4} + \ldots \right)$$

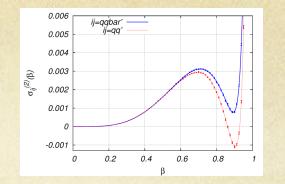
Results @ parton level: The all-fermionic reactions

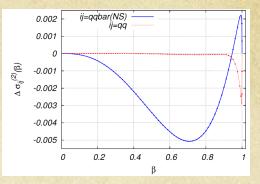

Czakon, Mitov '12


$$q\bar{q} \rightarrow t\bar{t} + q\bar{q}\big|_{NS}$$
,
 $q\bar{q}' \rightarrow t\bar{t} + q\bar{q}'$,
 $qq' \rightarrow t\bar{t} + qq'$,
 $qq \rightarrow t\bar{t} + qq$.

P. Bärnreuther et al arXiv:1204.5201

These partonic cross-sections are very small. Compare to the ones involving gluons!





♦ Had to compute up to beta=0.9999 to get the high-energy behavior right.

Results @ parton level: The all-fermionic reactions

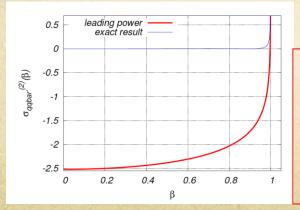
$$q\bar{q} \rightarrow t\bar{t} + q\bar{q}\big|_{\mathrm{NS}},$$

 $q\bar{q}' \rightarrow t\bar{t} + q\bar{q}',$
 $qq' \rightarrow t\bar{t} + qq',$
 $qq \rightarrow t\bar{t} + qq.$

The interesting feature: high-energy logarithmic rise:

$$\sigma_{f_1 f_2 \to t\bar{t} f_1 f_2}^{(2)} \Big|_{\rho \to 0} \approx c_1 \ln(\rho) + c_0 + \mathcal{O}(\rho)$$
 $\rho = \frac{4m_t^2}{s}$

$$\rho = \frac{4m_t^2}{s}$$

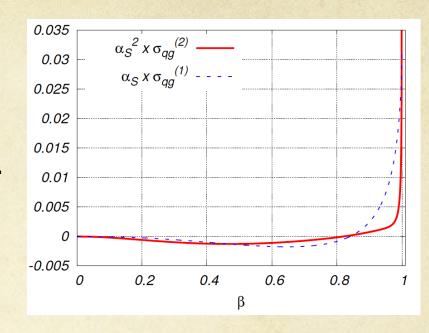

$$c_1 = -0.4768323995789214$$

Predicted in analytical form

Ball, Ellis '01

$$c_0 \text{ (from Eqs. (6.3, 6.4))} = \begin{cases} -2.5173 & \text{from } \sigma_{q\bar{q}'}^{(2)} \\ -2.5186 & \text{from } \sigma_{qq'}^{(2)} \end{cases}$$

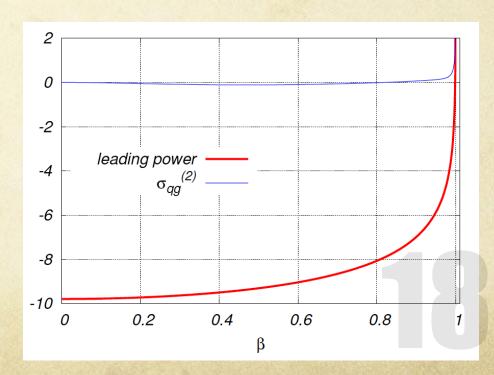
- Direct extraction from the fits. Czakon, Mitov '12 5% uncertainty.
- Agrees with independent prediction. 50% uncertainty. Moch, Uwer, Vogt '12

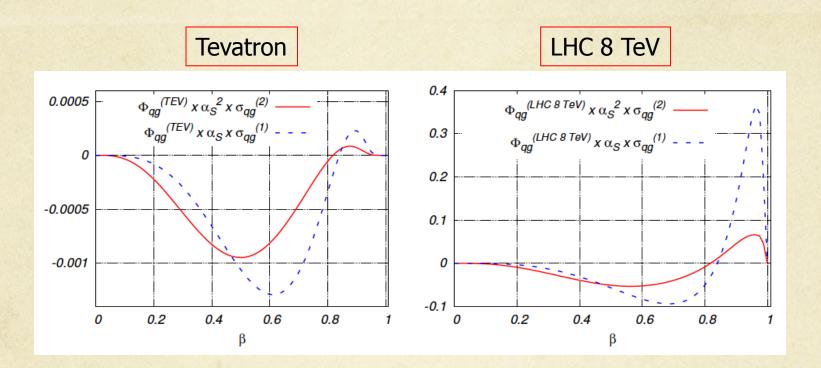

High-energy expansion non-convergent.

Applies only to the high-energy limit.

	Tevatron	LHC 7 TeV	LHC 8 TeV	LHC 14 TeV
$\Delta \sigma_{q\bar{q},(\mathrm{NS})} [\mathrm{pb}]$	-0.0020	-0.0097	-0.0124	-0.0299
$\sigma_{q\bar{q},(\mathrm{NS})}$ [pb]	-0.0009	-0.0001	0.0021	0.0464
$\sigma_{\rm all} \; [{ m pb}]$	0.0003	0.0970	0.1504	0.7885
$\sigma_{\rm tot} \; [{ m pb}]$	7.0056	154.779	220.761	852.177

Czakon, Mitov '12


- ✓ Correction about -1% (Tev and LHC).
- ✓ Notable decrease of scale dependence at LHC.
- ✓ NNLO <u>large</u> compared to NLO.


√ High-energy log-limit correct

Ball, Ellis '01

- ✓ Agree for the constant with Moch, Uwer, Vogt '12
- ✓ The limit itself plays no Pheno role

X-section times flux

		Tevatron	LHC 7 TeV	LHC 8 TeV	LHC 14 TeV
I_1	Due to $\sigma_{qg}^{(1)}$ [pb]	-0.068	-0.88	-0.48	9.01
I_2	Due to $\sigma_{qg}^{(2)}$ [pb]	-0.057	-1.82	-2.25	-4.07
I_3	$\sigma_{qg}^{(2)}(\text{Hathor}; (A+B)/2) \text{ [pb]}$	0.040	5.78	8.11	27.36
I_4	$(I_3 - I_2) / \sigma_{\text{tot}} \ [\%]$	1.4	4.9	4.7	3.7