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NLO+PS
n Next-to-leading order parton showers (NLO+PS) have been 

realized as practical tools (POWHEG,MC@NLO, Sherpa) and are 
being today routinely used for LHC analyses

n First only processes with no associated jets in the final state, e.g. 
Drell-Yan, diboson, tt, VBF Higgs, ... 

n Now associated jet production also within reach, e.g. for Higgs 
production in POWHEG there is 

• inclusive Higgs production (H)

• Higgs plus one jet (HJ)

• Higgs plus two jets (HJJ) 

[same for W and Z]
n To generate these processes need a generation cut on the jets or a so-

called Born-suppression factor (see later) 

Campbell, Ellis, Frederix,Nason, 
Oleari, Williams 1202.5475



Why merging
n These generators overlap in phase-space, e.g. 

• H describes the first jet only at LO accuracy, and additional jets 
only at PS accuracy 

• HJ describes quantities inclusive in Higgs plus one jet at NLO 
accuracy, the second jet at LO accuracy, additional jets at PS 
accuracy 

• HJ can not be used inclusive jet cross-sections, since the NLO 
calculation diverges

• HJJ describes two jet at NLO accuracy, but can not be used 
without the requirement of two jets  

• ... 

It is then natural to want to merge these calculations, so that NLO 
accuracy is guaranteed for all classes of observables in end results    



Standard merging
Standard strategy to the merging problem 

1. separate the output of each simulation according to the jet-
multiplicity (⇒ jet-measure merging scale), discarding events for 
which each generator does not possess NLO accuracy

2. finally join events in the inclusive sample
⇒ In essence, each generator contributes a single exclusive jet-bin to

  the final inclusive sample  
Lavesson, Lonnblad 0811.2912; Alioli, Hamilton, Re 1108.0909; Hoeche, Krauss, Schonherr, Siegert 

1207.5030; Gehrmann, Hoeche, Krauss, Schonherr, Siegert 1207.5031; Frederix, Frixione 1209.6215; 
Alioli, Bauer et al. 1211.7049; Platzer 1211.5467; Lonnblad, Prestel 1211.7278
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Relative contributions in the inclusive sample determined by the 
(unphysical) merging scale, but an optimal choice is difficult

☹  a too large scale forces one to describe relatively hard jets using
     the H generator, benefits of the HJ and HJJ calculations are lost
☹  with a too small merging scale NLO calculations unreliable



Merging scale issues
Example: 

• take NLO+PS accurate calculation for inclusive Higgs (with NLL 
Sudakov form factors) 

• consider now the cross-section integrated up to some (small) pt,cut

• missing NNLL terms in the Sudakov are αs2L with L=log(pt,cut/MH)

• in the peak region αsL2∼1, therefore αs2L ∼ αs3/2

• NLO quality is lost, since this requires missing terms to be O(αs2)



Merging scale issues
Example: 

• take NLO+PS accurate calculation for inclusive Higgs (with NLL 
Sudakov form factors) 

• consider now the cross-section integrated up to some (small) pt,cut

• missing NNLL terms in the Sudakov are αs2L with L=log(pt,cut/MH)

• in the peak region αsL2∼1, therefore αs2L ∼ αs3/2

• NLO quality is lost, since this requires missing terms to be O(αs2)

Moral: even if the inclusive cross-section is NLO accurate, cut cross-
section can have a reduced accuracy if the cut is too low 

As a consequence, some approaches conservatively avoid low merging 
scales, others avoid claiming that NLO accuracy is preserved after 
merging, others include NNLL terms in the Sudakovs to preserve NLO 
accuracy, yet others add subtraction terms to restore NLO accuracy ...



Example from FxFx

From talk by Frixione 
about FxFx merging 

(Frixione &Frederix ‘12)

(In?)dependence of merging scale studied a posteriori. Can lead to 
observable/cut dependent conclusions



We instead want to reformulate the NLO X+(n+1) jet calculation, such 
that on integration NLO accurate results for X+n jets are recovered,  
i.e. we achieve the goal of merging without doing any merging at all 
(so there is simply NO merging scale)

MiNLO-merging

In essence, the idea behind the MiNLO-merging is to suitable upgrade 
the high multiplicity calculations (via MiNLO), so that when jets are 
iteratively integrated out the exact NLO calculation with lower jet-
multiplicity is recovered

NB: this is not possible in a standard NLO calculation (without MiNLO) 
since the integration simply diverges



The observation triggering the first idea behind MiNLO was in a paper 
with K. Melnikov [0910.3671]

☛ the impact of NLO calculations is often discussed using the same
     scale choice at LO and NLO, however more advanced LO
     calculations exist that rely on the CKKW procedure for scale
     setting (see later) and inclusion of Sudakov effects

Even at NLO the scale choice is an issue and different choices can 
lead to a different picture/contrasting conclusions, so it seemed 
natural to look for an extension of the CKKW method to NLO

MiNLO
Multiscale improved NLO



good scale bad scale

Scale choice at NLO
Often a “good scale” is determined a posteriori, either by requiring 
NLO corrections to be small, or by looking where the sensitivity to the 
scale is minimized



Scale choice at NLO
Often a “good scale” is determined a posteriori, either by requiring 
NLO corrections to be small, or by looking where the sensitivity to the 
scale is minimized

Reason: bad scale ➠ large logs ➠ large NLO, large scale dependence

But we also know that large NLO  ➠  bad scale choice, since NLO 
corrections can have a “genuine” physical origin 
(new channels opening up, Sudakov logarithms, color factors, large 
gluon flux ... ) 

Furthermore, double logarithmic corrections can never be absorbed by 
a choice of scale (single log). So a “stability criterion” can be misleading.  



Scale choice at LO

LO calculations in matrix elements generators that follow the CKKW 
procedure are quite sophisticated in the scale choice: 
they use optimized/local scales at each vertex and Sudakov form factors 
at internal/external lines  

Catani,Krauss, Kuehn, Webber ’01
extension to hh collisions Krauss ’02 

Reminder: 
a Sudakov form factor encodes the probability of evolving from one 
scale to the next without branching above a resolution scale Q0



Recap of CKKW
The CKKW prescription in brief:

use the kt algorithm to reconstruct the most likely branching 
history 

evaluate each αs at the local transverse momentum of the splitting 

for each internal line between nodes at scale Qi and Qj include a 
Sudakov form factor Δij=D(Q0,Qi)/D(Q0,Qj) that encodes the 
probability of evolving from scale Qi to scale Qj without emitting. 
For external lines include the Sudakov factor Δi=D(Q0,Qi)

match to a parton shower to include radiation below Q0 



Recap of CKKW
The CKKW prescription in brief:

use the kt algorithm to reconstruct the most likely branching 
history 

evaluate each αs at the local transverse momentum of the splitting 

for each internal line between nodes at scale Qi and Qj include a 
Sudakov form factor Δij=D(Q0,Qi)/D(Q0,Qj) that encodes the 
probability of evolving from scale Qi to scale Qj without emitting. 
For external lines include the Sudakov factor Δi=D(Q0,Qi)

match to a parton shower to include radiation below Q0 

Scale choice intertwined with inclusion of Sudakov form factors 



MiNLO

Born as an extension to NLO of the CKKW procedure, 
such that the procedure to fix the scales is unbiased and 
decided a priori

In particular, the focus is on processes involving many scales 
(e.g. X+multi-jet production) and on soft/collinear branchings, 
i.e. on the region where it is more likely that associated jets are 
produced 
[MiNLO has nothing to say about processes like tt etc.] 



Two observations
1. A generic NLO cross-section has the form 

Adopting CKKW scales at LO, this becomes naturally  

and the scale choices µR’ and µR’’ are irrelevant for the scale cancelation

2. Sudakov corrections included at LO via the CKKW procedure lead 
to NLO corrections that need to be subtracted to preserve NLO 
accuracy 
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The original MiNLO

1. Find the CKKW n clustering scales Q1< ... < Qn. Fix the hard scale of 
the process Q to the system invariant mass after clustering. Set Q0 to Q1 
(inclusive on radiation below Q1)

2. Evaluate the n coupling constants at the scales Qi (times a factor to 
probe scale variation)

3. Set µR in the virtual to the geometric average of these scales and µF to 
the softest scale Q1

4. Include Sudakov form factors for Born and virtual terms, and for the 
real term after the first branching

5. Subtract the NLO bit present in the CKKW Sudakov of the Born

6. The (n+1)th power of αs in the real and virtual is evaluated at the 
arithmetic average of the n αs in the Born term (since corrections can be 
thought of as additive at each vertex, but other choices possible)



MiNLO in one equation
Example: take e.g. HJ

In POWHEG it is customary to discuss the B function, which for 
HJ is defined as  

With MiNLO this function becomes 
Q0=qTQ=MH

Δ(Q0,Q0)=1

Δ(Q0,Q0)=1

Δ(Q0,Q) Δ(Q0,Q)
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Properties of MiNLO
MiNLO satisfies the following requirements

the result is accurate at NLO, i.e. the scale dependence is NNLO

the accuracy in the Sudakov region depends on the observable and 
the form of the Sudakov used 

the smooth behaviour of the CKKW scheme in the singular regions 
is preserved 

X+n-jet cross-sections are finite even without jet cuts (do not need 
generation cuts or Born suppression factors)

 X+n-jet cross-sections reproduce the inclusive cross-section 
accurate to LO (and better, see later)

the procedure is simple to implement in any NLO calculation, i.e. 
the improvement requires only a very modest amount of work 



RUN: µ = HT

FXD: µ = MH

First MiNLO results

• MiNLO mimics POWHEG all the way down to very small pT,H 
where standard H+1jet NLO calculations diverge

• MiNLO uncertainty band compatible with POWHEG all the way 
down to low transverse momenta

• MiNLO more compatible with fixed rather than running scales 
(surprising? No, running scale misses Sudakov) 



H+2jets

• without cuts impossible to compare to standard NLO 
• again, MiNLO uncertainty band compatible with POWHEG all 

the way down to low transverse momenta

If NLO+PS calculations upgraded with MiNLO (without any merging) 
describe inclusive distributions so well the natural questions become ... 



☛ What is the accuracy of the MiNLO+PS calculation when looking at
     inclusive quantities? 

✗  in the original MiNLO formulation terms neglected are O(αs3/2), 
    so almost NLO, but not quite ...  

MiNLO & merging
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☛ Can one modify the MiNLO procedure to guarantee NLO accuracy
     for also inclusive quantities?

✔ yes, our explicit study of the case of H/V+jet shows that this is
     possible there. This requires some changes that were part of the
     freedom in the formulation of MiNLO 



☛ What is the accuracy of the MiNLO+PS calculation when looking at
     inclusive quantities? 

✗  in the original MiNLO formulation terms neglected are O(αs3/2), 
    so almost NLO, but not quite ...  

MiNLO & merging

☛ Can one modify the MiNLO procedure to guarantee NLO accuracy
     for also inclusive quantities?

✔ yes, our explicit study of the case of H/V+jet shows that this is
     possible there. This requires some changes that were part of the
     freedom in the formulation of MiNLO 

☛ Can one also solve the general case? The facts that 
- the simplest MiNLO already works well (see also later ...)
- the HJ/VJ case could be solved in a relatively simple way
  make us confident that this is possible  



The proof
Here I’ll only sketch the idea (two versions of full proof in 1212.4504) 
Consider for simplicity the explicit case of H and H+1jet

The HJ-MiNLO formula reads

with
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The idea is to compare this with the NNLL resummation (including 
finite parts to achieve NLO accuracy for Higgs production, i.e. NLO(0)) 
and just see what is missing in the MiNLO formula



The proof
NNLLΣ Higgs qT resummation at fixed rapidity can be written as 

Integrating in qT one gets

i.e. the formula is NLO(0) accurate if O(αs) corrections to the 
coefficient functions are included and Rf is LO(1) accurate

Now, need to show that if the derivative is taken explicitly, and some 
higher orders are neglected, NLO(0) accuracy is maintained.
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The proof
Taking the derivative one gets
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B1

The proof
Taking the derivative one gets
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The proof
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Q. e. d.

☛ The original MiNLO prescription is less than NLO accurate in
     the description of inclusive quantities, in that it neglects O(αs

3/2)
     terms

☛ One way to achieve NLO accuracy from HJ also for inclusive
     Higgs observables is to 

✔  include the B2 term in the Sudakov form factors 

✔  take the scale in the coupling constant in the real, virtual and
     subtraction terms equal to the Higgs transverse momentum

Provided this is done, merging of e.g. H and HJ is effectively 
achieved without doing any merging! 



Phenomenology

☛ Excellent agreement in both in central value and in size of
     uncertainty bands (less so in W/Z)

Higgs (MH=125 GeV) rapidity of the LHC ( 8 TeV). Use 
MSTW8NLO, bands are “7-scale” variation, take hfact = 100 in H



Higgs pt

☛ overall good agreement over the whole region

☛ pt,H described only at LO accuracy at high pt,H in the H generator,
    (evident from the uncertainty band getting larger)

We looked at many more distributions, see 1212.4504 for more.
Rather than commenting many distributions, before concluding, I’d 
like to discuss briefly three more points ...  



MiNLO-VJJ vs data①
Before concluding, more propaganda for MiNLO. 
We recently implemented Wjj/Zjj in POWHEG, and compared the 
WJJ/ZJJ-MiNLO generators against ATLAS data from 0 to 5 jets. 

Campbell, Ellis, Nason, Zanderighi 1303.xxxx
Wjj also in Frederix et al. 1110.5502; Zjj in Re 1204.5433 

Results out of the box. Nothing has been tuned here. 
Agreement is not bad ... 



MiNLO-VJJ vs data

We looked at all ATLAS distributions in 1201.1276 (Wjj) and 
1111.2690 (Zjj) and always found a similar good agreement. 
These results are very encouraging in terms of extending the merging 
to more complex processes. 

①



Effects from MPI
Reminder: since the Born cross-section of W/Z with associated jets is 
divergent, one needs a generation cut or a Born suppression factor 
(i.e. a reweighing factor F that vanishes in divergent regions, so that 
events have weight 1/F)   

②
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(i.e. a reweighing factor F that vanishes in divergent regions, so that 
events have weight 1/F)   

Generation cuts work if low-pt events that are “cut out” do not contribute 
to physical distributions, as is usually the case if the cut is low enough. 

If low pt events contribute, they spoil the quality of the results when 
using a Born-suppression too, since spikes appear in distributions
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Effects from MPI
Reminder: since the Born cross-section of W/Z with associated jets is 
divergent, one needs a generation cut or a Born suppression factor 
(i.e. a reweighing factor F that vanishes in divergent regions, so that 
events have weight 1/F)   

Generation cuts work if low-pt events that are “cut out” do not contribute 
to physical distributions, as is usually the case if the cut is low enough. 

If low pt events contribute, they spoil the quality of the results when 
using a Born-suppression too, since spikes appear in distributions

Mechanism to promote very low pt Born events into high pt events:
- real (ISR or FSR) radiation [⇒ technical improvements in POWHEG]
- parton shower (when the shower emission veto scale is too high) 
- hadronization (as expected, does not really happen)
- multi-parton interactions (MPI)  

②



Effects from MPI
Vjj processes are particularly sensitive to MPI: single boson 
production at very how pt and dijet event from secondary interaction 

NB: MPI made it impossible to us to generate final distributions using 
HT-based scale (MiNLO suppresses events with large weights) 

• with a generation cut this physical effect is completely missed 
(checking independence from value of generation cut not enough)

• only when the inclusive cross-section if predicted accurately (e.g. 
with MiNLO), the estimate of MPI contribution is sensible 

②



POWHEG@NNLO
How can one use MiNLO to upgrade POWHEG to NNLO? 

③



POWHEG@NNLO
How can one use MiNLO to upgrade POWHEG to NNLO? 

For simplicity consider the case of Higgs production

�
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inclusive Higgs rapidity computed at NNLO

inclusive Higgs rapidity from HJ-MINLO generator
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POWHEG@NNLO
How can one use MiNLO to upgrade POWHEG to NNLO? 

Since HJ-MINLO is NLO accurate, it follows that 

Thus, reweighing HJ-MINLO results with this factor one obtains 
NNLO+PS accuracy, exactly in the same way as MC@NLO or 
POWHEG are NLO+PS accurate  
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For simplicity consider the case of Higgs production
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inclusive Higgs rapidity computed at NNLO

inclusive Higgs rapidity from HJ-MINLO generator

③



Conclusions
MiNLO born as a simple procedure to assign scales and Sudakov form 
factors in NLO calculations to account for distinct kinematical scales.

Key features

results well-behaved in Sudakov region, where standard NLO 
calculations break down

away from the Sudakov regions, results are accurate at NLO 

procedure simple to implement in NLO calculations, just try it out ...

HJ, WJ, ZJ NLO calculations upgraded with (new) MiNLO 
reproduce NLO results also for inclusive distributions, i.e. merging 
achieved without doing merging. 

VJJ-MiNLO agree well with data (from 0 to 5jets) without merging

MiNLO provides a path to upgrade POWHEG to NNLO 



Conclusions

MiNLO still very new. Lots of things to learn/do still. 

Next:  

extend merging to more complex processes without merging scale

phenomenological studies with POWHEG at NNLO using MiNLO

improving logarithmic accuracy of MiNLO in Sudakov regions



A useful integral
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i.e. each log “counts” as a square-root of 1/αs after integration over a 
transverse momentum when a Sudakov weight is present 


