Latest Higgs results from ATLAS

MITP Workshop "The first three years of the LHC"

Christian Schmitt University of Mainz

Bundesministerium für Bildung und Forschung

Overview

- Higgs production and decay
- Challenges
- Higgs search in individual channels
- Combination of signal strength and mass
- Is it the SM Higgs?
 - Couplings
 - Spin and CP
- Other searches
- Summary & Outlook

Overview

- Higgs production and decay
- Challenges
- Higgs search in individual channels
- Combination of signal strength and mass
- Is it the SM Higgs?
 - Couplings
 - Spin and CP
- Other searches
- Summary & Outlook

Higgs production

FTH 0

Gluon fusion

- Largest production rate for all Higgs masses at the LHC
- Gluon-gluon initial state

- sensitive to top quark Yukawa coupling
 - Iargest contribution in loop from top quark
 - b quark contribution small (about 5% in SM)
- Substitution of the state o

$$\sigma_{gg\to h}(\hat{s}) \sim \sum_{q} F_{1/2}(q)$$

Vector Boson Fusion

Vector Boson Fusion
Sensitive to VVH couplings
Interaction vanishes if vev=0
Needed to cancel divergence in WW scattering

- Distinct event signature
 - 2 "tagging" jets with high invariant dijet mass and large rapidity difference
 - No color flow between tagged jets suppressed hadronic activity in central region

Higgs decay

Most sensitive channels in low mass region: ⊘ H->WW only in VH production due to background and trigger

@ H->77

Higgs decays to photons

Opminant contribution is W loop!

Contribution from top is small and has opposite sign

$$\Gamma(h \rightarrow \gamma \gamma) \approx \frac{\alpha^3}{256\pi^2 s_W^2} \frac{M_h^3}{M_W^2} \left| 7 - \frac{16}{9} + \dots \right|^2$$

Rate of H-> & can be changed by rescaling the couplings to fermions (c_F) and to vector bosons (c_V)

$$\frac{\Gamma(h \to \gamma \gamma)}{\Gamma(h \to \gamma \gamma)}_{SM} \sim \left(1 - .2 \frac{c_F}{c_V}\right)^2$$

ГОР

Overview

- Higgs production and decay
- Challenges
- Higgs search in individual channels
- Combination of signal strength and mass
- Is it the SM Higgs?
 - Couplings
 - Spin and CP
- Other searches
- Summary & Outlook

The challenge

Tiny cross 0 section for Higgs production need large integrated luminosity © Large background rates

needle in the haystack

The first three years of the LHC

Need to understand the SM background!

A not so clean environment ...

Overview

- Higgs production and decay
- Challenges
- Higgs search in individual channels
- Combination of signal strength and mass
- Is it the SM Higgs?
 - Couplings
 - Spin and CP
- Other searches
- Summary & Outlook

H -> ZZ -> 4 Leptons

Challenges
very small rate
lepton identification and reconstruction efficiency
about 15 selected events in 21fb⁻¹

Advantage

Mass can be fully reconstructed -> narrow peak
Pure, i.e. S/B-1
Main backgrounds:
ZZ^(*) production (irreducible)

H -> ZZ -> 41: backgrounds

 Given the low rate, a precise background estimate is crucial
 Use control regions to measure the background processes with cuts very close to actual analysis selection

Second Example on the right:

- Z+jets and ttbar estimate by relaxing lepton criteria on the 3rd and 4th lepton
- Clear separation of the backgrounds allows for the extraction of both backgrounds

H -> ZZ -> 41: results

 7.4 ± 0.4

 3.74 ± 0.93

 18.2 ± 2.4

total

 15.9 ± 2.1

17

32

 $1.4\ 27.1 \pm 3.4$

H - >

Signature: 2 isolated energetic photons Small branching ratio but good signal yield Section Expect O(500) signal events after selection in current data Good mass resolution -> clear peak over smooth background Main backgrounds: ⊗ [×]j (200 pb, reducible) jj (500 mub, reducible) Need powerful y-jet rejection O(10⁴)

140

ATLAS-CONF-2013-012

150

m_{vv} [GeV]

160

130

120

100

110

H->vy: mass spectra and classes (ATLAS)

Enhance sensitivity by splitting into event categories

2 VBF + 3 VH + 9 ggF categories converted, central/forward,...

Category	S/B	$\sigma_{\rm M}/{\rm GeV}$	
best	0.57	1.64	
worst	0.01	2.52	
inclusive	0.03	1.77	

 category weight = ln (1+ s/b) s/b evaluated in mass window containing 90% signal
 analytic model for s and b
 significant excess at M= 126.8 GeV signal strength 1.65±0.3 x SM

H->WW->lvlv

- Most sensitive channel in a wide mass range
- Signature:
 - Ø 2 oppositely charged leptons
 - \odot large missing E_T

- ♦ Challenge: poor mass resolution due to 2 neutrinos
 ♦ Use Transverse mass m_T = √(E_T^{ll} + E_T^{miss})² |p_T^{ll} + p_T^{miss}|²
 ♦ Fit shape of mT to extract signal contribution
 ♦ Classify events by number of jets
 ♦ 0 jets dominated by WW background, sensitive to ggF
 ♦ 1+2 jets dominated by top background
 - ② 2 jets selection to isolate VBF production

H->WW->lvlv: Results

Overview

- Higgs production and decay
- Challenges
- Higgs search in individual channels
- Combination of signal strength and mass
- Is it the SM Higgs?
 - Couplings
 - Spin and CP
- Other searches
- Summary & Outlook

Inputs to the combination

 Combination of many different channels. Further subdivision
 enhances sensitivity (e.g. H->xx)
 ATLAS-CONF-2013-014 ATLAS-CONF-2013-034

Higgs Boson	Subsequent	Sub-Channels	
Decay	Decay		
		2011 $\sqrt{s} = 7 \text{ TeV}$	
$H \rightarrow ZZ^{(*)}$	4ℓ	$\{4e, 2e2\mu, 2\mu 2e, 4\mu, 2\text{-jet VBF}, \ell\text{-tag}\}$	4.6
$H \rightarrow \gamma \gamma \gamma$	_	10 categories	
$\Pi \to \gamma \gamma$		${p_{\text{Tt}} \otimes \eta_{\gamma} \otimes \text{conversion}} \oplus {\text{2-jet VBF}}$	
$H \to WW^{(*)}$	<i>ℓνℓν</i>	$\{ee, e\mu, \mu e, \mu\mu\} \otimes \{0\text{-jet}, 1\text{-jet}, 2\text{-jet VBF}\}$	
	$ au_{ m lep} au_{ m lep}$	$\{e\mu\} \otimes \{0\text{-jet}\} \oplus \{\ell\ell\} \otimes \{1\text{-jet}, 2\text{-jet}, p_{\mathrm{T},\tau\tau} > 100 \text{ GeV}, VH\}$	4.6
$H \to \tau \tau$	$ au_{ m lep} au_{ m had}$	$\{e, \mu\} \otimes \{0\text{-jet}, 1\text{-jet}, p_{T,\tau\tau} > 100 \text{ GeV}, 2\text{-jet}\}$	4.6
	$ au_{ m had} au_{ m had}$	{1-jet, 2-jet}	4.6
	$Z \rightarrow \nu \nu$	$E_{\rm T}^{\rm miss} \in \{120 - 160, 160 - 200, \ge 200 \text{ GeV}\} \otimes \{2\text{-jet}, 3\text{-jet}\}$	4.6
$VH \rightarrow Vbb$	$W \to \ell \nu$	$p_{\rm T}^W \in \{< 50, 50 - 100, 100 - 150, 150 - 200, \ge 200 \text{ GeV}\}$	4.7
	$Z \to \ell \ell$	$p_{\rm T}^{\rm Z} \in \{< 50, 50 - 100, 100 - 150, 150 - 200, \ge 200 \text{ GeV}\}$	4.7

		v	
r(*)	4ℓ	$\{4e, 2e2\mu, 2\mu 2e, 4\mu, 2\text{-jet VBF}, \ell\text{-tag}\}\}$	20.7
γ	_	14 categories $\{p_{\text{Tt}} \otimes \eta_{\gamma} \otimes \text{conversion}\} \oplus \{2\text{-jet VBF}\} \oplus \{\ell\text{-tag}, E_{\text{T}}^{\text{miss}}\text{-tag}, 2\text{-jet VF}\}$	4} 20.7
V(*)	lνlv	$\{ee, e\mu, \mu e, \mu\mu\} \otimes \{0\text{-jet}, 1\text{-jet}, 2\text{-jet VBF}\}$	20.7
	$ au_{ m lep} au_{ m lep}$	$\{\ell\ell\} \otimes \{1\text{-jet}, 2\text{-jet}, p_{T,\tau\tau} > 100 \text{ GeV}, VH\}$	13
-	$ au_{ m lep} au_{ m had}$	$\{e, \mu\} \otimes \{0\text{-jet}, 1\text{-jet}, p_{T,\tau\tau} > 100 \text{ GeV}, 2\text{-jet}\}$	13
•	$ au_{ m had} au_{ m had}$	{1-jet, 2-jet}	13
	$Z \rightarrow \nu \nu$	$E_{\rm T}^{\rm miss} \in \{120 - 160, 160 - 200, \ge 200 \text{ GeV}\} \otimes \{2\text{-jet}, 3\text{-jet}\}$	13
'bb	$W \to \ell \nu$	$p_{\rm T}^{\rm W} \in \{< 50, 50 - 100, 100 - 150, 150 - 200, \ge 200 \text{ GeV}\}$	13
	$Z \to \ell \ell$	$p_{\rm T}^Z \in \{< 50, 50 - 100, 100 - 150, 150 - 200, \ge 200 \text{ GeV}\}$	13
	(*) γ 7(*) τ bb	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $

Signal strength $\mu = \sigma_{obs} / \sigma_{SM}$ Significant excess in all three dominant channels (33, ZZ, WW) compared to background only H->b5 and H-> $\tau\tau$ not yet updated to full dataset

Higgs Boson Decay	μ (<i>m_H</i> =125.5 GeV)
$VH \rightarrow Vbb$	-0.4 ± 1.0
$H \to \tau \tau$	0.8 ± 0.7
$H \to WW^{(*)}$	1.0 ± 0.3
$H \rightarrow \gamma \gamma$	1.6 ± 0.3
$H \rightarrow ZZ^{(*)}$	1.5 ± 0.4
Combined	1.30 ± 0.20

Compatibility of m_H and μ

- Mass information from high resolution channels H->&& and H->ZZ->4l
 - H->WW->lvlv has only poor resolution due to the neutrinos in the final state

 $m_{\rm H} = 125.5 \pm 0.2 (\text{stat})^{+0.5}_{-0.6} (\text{sys}) \,\text{GeV}$

Overview

- Higgs production and decay
- Challenges
- Higgs search in individual channels
- Combination of signal strength and mass
- Is it the SM Higgs?
 - Couplings
 - Spin and CP
- Other searches
- Summary & Outlook

Is it the SM Higgs? New particle decays into two particles with identical spin and charge sum O O Discovery of a neutral boson Overall signal strength consistent with SM prediction (also for individual channels with still large uncertainties)

- Couplings of the Higgs in the SM are fixed for a given m_H
 Need to probe coupling structure of new particle!
 Spin and CP?
 - Spin 1 hypothesis very unlikely due to the decay into two photons (disfavoured for spin 1 by Landau-Yang theorem)
 - Selection in H->WW makes use of predictions for spin 0

Overview

- Higgs production and decay
- Challenges
- Higgs search in individual channels
- Combination of signal strength and mass
- Is it the SM Higgs?
 - Couplings
 - Spin and CP
- Other searches
- Summary & Outlook

Production mechanism

Group the production modes into 2 groups

- ggF and ffH scale with the ffH coupling in the SM
 VBF and VH scale with the WWH/ZZH coupling in the
 - SM

 \odot m_H fixed to 125.5 GeV

 $\mu_{\rm VBF+VH}/\mu_{\rm ggF+t\bar{t}H} = 1.2^{+0.7}_{-0.5}$

Closer look at couplings

Sample Assumptions:

Signals originate from a single resonance with mass of 125.5 GeV with a negligible width. Narrow width approximation can be used: $(\sigma \cdot \mathrm{BR})(ii \to \mathrm{H} \to ff) = \frac{\sigma_{ii} \cdot \Gamma_{ff}}{\Gamma_{H}}$

Only modifications of coupling strengths, i.e. absolute values of couplings, are taken into account: the observed state is assumed to be scalar, CP even

 \oslash Introduce scale factors k_i such that the cross sections and partial decay width associated with particle i scale with k_i^2

 $(\sigma \cdot \mathrm{BR})(gg \to \mathrm{H} \to \gamma \gamma) = \kappa_g^2 \sigma_{\mathrm{SM}}(gg \to \mathrm{H}) \cdot \frac{\kappa_\gamma^2}{\kappa_{\mathrm{T}}^2} \mathrm{BR}_{\mathrm{SM}}(\mathrm{H} \to \gamma \gamma)$

Summary of coupling tests

$$\kappa_F = \kappa_t = \kappa_b = \kappa_\tau$$

 $\kappa_V = \kappa_W = \kappa_Z$

$$\lambda_{FV}~=~\kappa_F/\kappa_V$$

$$\Gamma_{\rm H} = \frac{\kappa_{\rm H}(\kappa_i)}{1 - {\rm BR}_{\rm inv.,undet.}} \Gamma_{\rm H}^{\rm SM}$$

ATLAS Preliminary $\sqrt{s} = 7 \text{ TeV}, \int Ldt = 4.6-4.8 \text{ fb}^{-1}$						
Ξ ± 1 σ ± 2 σ			vs = 8 TeV,	√s = 8 TeV, ∫Ldt = 13-20.7 fb ⁻¹		
model: K _V , K _F	κ_{V}					
	κ_{F}					
$\lambda_{FV}, \kappa_{VV}$	λ_{FV}					
$\left \begin{array}{c} \text{model:} \\ \lambda_{\text{WZ}}, \lambda_{\text{FZ}}, \\ \kappa_{\text{ZZ}} \end{array}\right $	^t λ _{wz}					
del: ĸ _γ	κ_{g}					
μ M g	κ_{γ}					
$\kappa_{g}, \kappa_{\gamma}, B_{i,u}$	1-B _{i,u}					
		-1	0	1		
m _H =	125.5 G	ieV	para	meter value		

Overview

- Higgs production and decay
- Challenges
- Higgs search in individual channels
- Combination of signal strength and mass
- Is it the SM Higgs?
 - Couplings
 - Spin and CP
- Other searches
- Summary & Outlook

 $\begin{aligned} & A(H \to VV) = \Lambda^{-1} \left[2g_{1}t_{\mu\nu}f^{*1,\mu\alpha}f^{*2,\nu\alpha} + 2g_{2}t_{\mu\nu}\frac{q_{\alpha}q_{\beta}}{\Lambda^{2}}f^{*1,\mu\alpha}f^{*2,\nu\beta} \\ & +g_{3}\frac{\tilde{q}^{\beta}\tilde{q}^{\alpha}}{\Lambda^{2}}t_{\beta\nu}(f^{*1,\mu\nu}f^{*2}_{\mu\alpha} + f^{*2,\mu\nu}f^{*1}_{\mu\alpha}) + g_{4}\frac{\tilde{q}^{\nu}\tilde{q}^{\mu}}{\Lambda^{2}}t_{\mu\nu}f^{*1,\alpha\beta}f^{*(2)}_{\alpha\beta} \\ & +m_{V}^{2} \left(2g_{5}t_{\mu\nu}\epsilon_{1}^{*\mu}\epsilon_{2}^{*\nu} + 2g_{6}\frac{\tilde{q}^{\mu}q_{\alpha}}{\Lambda^{2}}t_{\mu\nu}(\epsilon_{1}^{*\nu}\epsilon_{2}^{*\alpha} - \epsilon_{1}^{*\alpha}\epsilon_{2}^{*\nu}) + g_{7}\frac{\tilde{q}^{\mu}\tilde{q}^{\nu}}{\Lambda^{2}}t_{\mu\nu}\epsilon_{1}^{*}\epsilon_{2}^{*} \right) \\ & +g_{8}\frac{\tilde{q}_{\mu}\tilde{q}_{\nu}}{\Lambda^{2}}t_{\mu\nu}f^{*1,\alpha\beta}\tilde{f}^{*(2)}_{\alpha\beta} + g_{9}t_{\mu\alpha}\tilde{q}^{\alpha}\epsilon_{\mu\nu\rho\sigma}\epsilon_{1}^{*\nu}\epsilon_{2}^{*\rho}q^{\sigma} \\ & \quad +\frac{g_{10}t_{\mu\alpha}\tilde{q}^{\alpha}}{\Lambda^{2}}\epsilon_{\mu\nu\rho\sigma}q^{\rho}\tilde{q}^{\sigma}(\epsilon_{1}^{*\nu}(q\epsilon_{2}^{*}) + \epsilon_{2}^{*\nu}(q\epsilon_{1}^{*})) \right] \\ & \qquad \qquad \text{arXiv:1001.3396} \end{aligned}$

General amplitude for decay into two identical vector bosons contains 10 effective coupling constants gi

- Assume g₁=g₅=1 (graviton like tensor with minimal couplings)
- Production mode can be via ggF as well as via qqbar
 Scan as function of the qqbar fraction

Information on spin from decay angle distribution

Sinematics fully described by five angles and two invariant masses (assuming fixed m_H)

- Only ZZ events can provide full information (but low statistics)
- Other channels in principle less sensitive (but higher statistics)

Spin in H->WW: method

ATLAS Preliminary

- Nominal H->WW analysis makes use of spin-O nature of SM Higgs boson via cut on angle between leptons
 - Need to relax this cut (and others) in order to maximize sensitivity to spin-2

ATLAS Preliminary

- Output Use 2 BDTs with 4 variables to deal with increased background and spin separation
 - Train spin-0/spin-2 vs. background Input variables: $\Delta \phi_{ll}, m_{ll}, p_{T}^{ll}, m_{T}$

 $\Delta \phi$ [rad

_____W/W

WZ/ZZ/Wv

Spin in H->WW: result

- Benchmark spin-2 model excluded at 95% confidence level in favour of SM Higgs boson
 - even stronger (up to 99%) with increased qqbar fraction

Spin in H->88

- Method: fit background subtracted cos(theta*) distribution
- Result: benchmark spin-2 model excluded with up to 99% CL (0% qqbar) in favour of SM Higgs ATLAS-CONF-2013-029

Spin in H->ZZ

- BDT with decay angles and invariant masses trained to separate between spin hypotheses
- In addition to spin-2 also spin-1 has been investigated
- Ø Results:
 - spin-1 excluded at 99.8% CL
 spin-2 excluded with >=83% CL

ATLAS-CONF-2013-013

Summary on Spin

All three channels clearly prefer the SM Higgs over the benchmark spin-2 model

 WW and & have complementary sensitivity as a function on the production mode
 beneficial for combination!!

CP in H->ZZ

Similar BDT with decay angles and invariant masses trained to separate between CP hypotheses (0⁺ and 0⁻)

Ø Result:

OP odd (spin-0) excluded at 97.8% CL

ATLAS-CONF-2013-013

Overview

- Higgs production and decay
- Challenges
- Higgs search in individual channels
- Combination of signal strength and mass
- Is it the SM Higgs?
 - Couplings
 - Spin and CP
- Other searches
- Summary & Outlook

SUSY: search for stop particle

SUSY search summary

		ATLAS SUSY	Searches* - 95% CL Lower Limits (Status	s: Dec 2012) 🔴
ы	MSUGRA/CMSSM : 0 lep + j's + E _{T.miss} MSUGRA/CMSSM : 1 lep + j's + E _{T.miss} Pheno model : 0 lep + j's + E _{T.miss}	L=5.8 fb ⁻¹ , 8 TeV [ATLAS-CONF-2012-109] L=5.8 fb ⁻¹ , 8 TeV [ATLAS-CONF-2012-104] L=5.8 fb ⁻¹ , 8 TeV [ATLAS-CONF-2012-109]	1.50 TeV q̃ = g̃ mass 1.24 TeV q̃ = g̃ mass 1.18 TeV g̃ mass (m(q̃) < 2 TeV, light,	ATLAS
ve searche	Pheno model : 0 lep + j's + $E_{T,miss}$ Gluino med. $\tilde{\chi}^{\pm}$ ($\tilde{g} \rightarrow q \bar{q} \tilde{\chi}^{\pm}$) : 1 lep + j's + $E_{T,miss}$ GMSB (\tilde{i} NLSP) : 2 lep (OS) + j's + $E_{T,miss}$ GMSB ($\tilde{\tau}$ NLSP) : 1-2 τ + 0-1 lep + j's + $E_{T,miss}$	L=5.8 fb ⁻¹ , 8 TeV [ATLAS-CONF-2012-109] L=4.7 fb ⁻¹ , 7 TeV [1208.4688] L=4.7 fb ⁻¹ , 7 TeV [1208.4688] L=4.7 fb ⁻¹ , 7 TeV [1210.1314]	1.38 TeV q̃ mass (m(g) < 2.0.4 light)	Preliminary
Inclusi	GGM (bino NLSP) : $\gamma\gamma + E^{T,miss}$ GGM (wino NLSP) : $\gamma + lep + E^{T,miss}$	L=4.8 fb ⁻¹ , 7 TeV [1209.0753] L=4.8 fb ⁻¹ , 7 TeV [ATLAS-CONF-2012-144]	1.07 TeV g mass (m($\overline{\chi}_1^0$) 0 GeV) 619 GeV g mass	$\int Ldt = (2.1 - 13.0) \text{fb}^{-1}$
	GGM (higgsino-bino NLSP) : $Z + jets + E_{T,miss}^{T,miss}$ GGM (higgsino NLSP) : Z + jets + $E_{T,miss}^{T,miss}$ Gravitino LSP : 'monojet' + $E_{T,miss}$	L=4.8 fb ⁻¹ , 7 TeV [1211.1167] L=5.8 fb ⁻¹ , 8 TeV [ATLAS-CONF-2012-152] L=10.5 fb ⁻¹ , 8 TeV [ATLAS-CONF-2012-147]	900 GeV $G_{11}(\overline{x}_{1}) > 220 \text{ GeV}$ 690 GeV $\widetilde{\mathbf{g}}$ m SS $(m_{1}) > 200 \text{ GeV}$ 645 GeV SS Ve $n(\widetilde{G}) > 10^{-4} \text{ eV}$	≬ s = 7, 8 ⊺eV
gen. sq. 10 med.	$\tilde{g} \rightarrow bb \tilde{\chi}^{\circ}$ (virtual b) : 0 lep + 3 b-j's + $E_{T,miss}$ $\tilde{g} \rightarrow tt \tilde{\chi}^{\circ}_{4}$ (virtual \tilde{t}) : 2 lep (SS) + j's + $E_{T,miss}$ $\tilde{g} \rightarrow tt \tilde{\chi}^{\circ}_{4}$ (virtual \tilde{t}) : 3 lep + j's + $E_{T,miss}$	L=12.8 fb ⁻¹ , 8 TeV [ATLAS-CONF-2012-145] L=5.8 fb ⁻¹ , 8 TeV [ATLAS-CONF-2012-105] L=13.0 fb ⁻¹ , 8 TeV [ATLAS-CONF-2012-151]	850 GeV 9 mass $(m(\overline{\chi}_{1}^{\circ}) < 200 \text{ GeV})$ 850 GeV 1 mass $(m(\overline{\chi}_{1}^{\circ}) < 300 \text{ GeV})$ 860 GeV 9 mass $(m(\overline{\chi}_{1}^{\circ}) < 300 \text{ GeV})$	8 TeV results
s 3rd	$\tilde{g} \rightarrow t\bar{t}\chi_{\tilde{t}}$ (virtual t) : 0 lep + multi-j's + $E_{T,miss}$ $\tilde{g} \rightarrow t\bar{t}\chi_{\tilde{t}}$ (virtual t) : 0 lep + 3 b-j's + $E_{T,miss}$ bb, $b_1 \rightarrow b\chi_{\tilde{t}}$: 0 lep + 2-b-jets + $E_{T,miss}$	L=5.8 fb ⁻¹ , 8 TeV [ATLAS-CONF-2012-103] L=12.8 fb ⁻¹ , 8 TeV [ATLAS-CONF-2012-145] L=12.8 fb ⁻¹ , 8 TeV [ATLAS-CONF-2012-165]	1.00 TeV \hat{g} mass $(m(\tilde{\chi}_1) < 300 \text{ GeV})$ 1.15 TeV \hat{g} mass $(m(\tilde{\chi}_1) < 200 \text{ GeV})$ 0 GeV \hat{b} mass $(m(\tilde{\chi}_1) < 120 \text{ GeV})$	7 TeV results
n. squarks production	$\begin{array}{c} bb, b'_{t} \rightarrow t \overline{\chi}^{\pm} : 3 \text{ lep } + j' \text{s} + E_{T,\text{miss}} \\ \widetilde{tt} (\text{light}), \widetilde{t} \rightarrow b \overline{\chi}^{\pm} : 1/2' \text{lep } (+ b \text{-jet}) + E_{T,\text{miss}} \\ \widetilde{tt} (\text{medium}), \widetilde{t} \rightarrow b \overline{\chi}^{\pm} : 1 \text{ lep } + b \text{-jet} + E_{T,\text{miss}} \\ \widetilde{tt} (\text{medium}), \widetilde{t} \rightarrow b \overline{\chi}^{\pm} : 2 \text{ lep } + E_{T} \end{array}$	L=13.0 fb ⁻¹ , 8 TeV [ATLAS-CONF-2012-151] L=4.7 fb ⁻¹ , 7 TeV [1208.4305, 1209.21027-87 Ge L=13.0 fb ⁻¹ , 8 TeV [ATLAS-CONF-2012-16 L=13.0 fb ⁻¹ , 8 TeV [ATLAS-CONF-2012-16]	405 b mass $(m(\overline{\chi}_{1}^{\pm}) = 2m(\overline{\chi}_{1}^{0}))$ \widetilde{t} m. s $(m(\overline{\chi}_{1}^{0}) = 55 \text{ GeV})$ 0-350 GeV \widetilde{t} mass $(m(\overline{\chi}_{1}^{0}) = 0 \text{ GeV}, m(\overline{\chi}_{1}^{\pm}) = 150 \text{ GeV})$ 160-440 GeV \widetilde{t} mass $(m(\overline{\chi}_{1}^{0}) = 0 \text{ GeV}, m(\overline{\chi}_{1}^{\pm}) = 10 \text{ GeV})$	
3rd ge direct	$\widetilde{tt}, \widetilde{t} \rightarrow t \overline{\chi}^{0}$: 1 lep + b-jet + $E_{T,miss}$ $\widetilde{tt}, \widetilde{t} \rightarrow t \overline{\chi}^{0}$: 0/1/2 lep (+ b-jets) + $E_{T,miss}$ \widetilde{tt} (natural GMSB): Z(\rightarrow II) + b-jet + $E_{T,miss}$	L=13.0 fb ⁻¹ , 8 = 0 [ATLA21 = 5-20 = 165" L=4.7 fb ⁻¹ , 1 eV [1208. 47,120 = 590,1209.418 L=2.1 fb ⁻¹ , 7 = 1 = 14. 36]	230-560 GeV \tilde{t} mass $(m(\bar{\chi}_1^0) = 0)$ 230-465 GeV \tilde{t} mass $(m(\bar{\chi}_1^0) = 0)$ 310 GeV \tilde{t} mass $(115 < m(\bar{\chi}_1^0) < 230 \text{ GeV})$	
EW direct	$ \begin{array}{c} \downarrow_{L}, \rightarrow \overline{\chi}_{0}^{*}: 2 \text{ lep } + E_{T, \text{miss}} \\ \overline{\chi}_{1}^{+}\overline{\chi}_{1}^{-}, \overline{\chi}_{1}^{+} \rightarrow \overline{\mathbb{I}} \vee [\overline{\mathbb{V}}] \rightarrow \mathbb{I} \vee \overline{\chi}_{1}^{*}: 2 \text{ lep } + E_{T, \text{miss}} \\ \overline{\chi}_{1}^{\pm}\overline{\chi}_{2}^{-} \rightarrow [\downarrow_{V}]_{L}^{-} [(\overline{\mathbb{V}}\mathbb{V}), \overline{\mathbb{V}}]_{L}^{-} [(\overline{\mathbb{V}}\mathbb{V}): 3 \text{ lep } + E_{T, \text{miss}} \\ \overline{\chi}_{2}^{\pm}\overline{\chi}_{2}^{-} \rightarrow W^{(*)}\overline{\chi}_{1}^{0}\overline{\zeta}^{(*)}\overline{\chi}_{2}^{0}: 3 \text{ lep } + E_{T, \text{miss}} \end{array} $	L=4.7 fb ⁻¹ , 7 TeV [208.285 85-195 6 L=4.7 fb ⁻¹ , 7 TeV [3:0.2884] L=13.0 fb ⁻¹ , 8 TeV [A1=AS-CONF-2012-154] 3.0 fb ⁻¹ , 8 TeV [ATLAS-CONF-2012-154]	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	s above)
Long-lived particles	Direct $\overline{\chi}_1^{\alpha}$ påir prod. (AMSB) : long-lived ; Stable \widetilde{g} R-hadrons : low β , $\beta\gamma$ (full defector) Stable t R-hadrons : low β , $\beta\gamma$ (full defector) GNSB stable	L=4, up ⁻¹ , 7 TeV [1210.2852] 22 L=4, up -7 TeV [1211.1597] L=4, 7 (b ⁻¹) TeV [1211.1597] L=4, 7 (-7, 7 TeV [1211.1597] L=4, 7 (-7, 7 TeV [1211.1597]	10 GeV χ ⁻ mass (1 < τ(χ ⁺) < 10 ns) 985 GeV g̃ mass 683 GeV t̃ mass 300 GeV τ̃ mass (5 < tanβ < 20) 700 GeV g̃ mass (0 ≥ 10 ⁵ < 1) < 15×10 ⁵ 1 mm	< er < 1 m ² decembed)
RPV	$\chi_1 \rightarrow qq\mu (RPV) : \mu + heavy displaced vertex LFV : pp \rightarrow v + X, \chi_1 = e + \mu assonanceLFV : pp \rightarrow v + X, \chi_2 = e(\mu, \nu, \tau) resonanceBilinear RPV C. S. M. vlep + j's + E_{T,miss}\bar{\chi}_1^* \bar{\chi}_1 = \bar{\chi}_1^* \rightarrow W \bar{\chi}_0^0, \bar{\chi}_0 \rightarrow ev_{\mu}, e_{N_0} = : 4 \text{ lep } + E_{T,miss}1, 1, 1, 1, 2, 2, 3, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,$	L=4.4 fb , 7 TeV [1210.7451] L=4.6 fb ⁻¹ , 7 TeV [Preliminary] L=4.6 fb ⁻¹ , 7 TeV [Preliminary] L=4.7 fb ⁻¹ , 7 TeV [ATLAS-CONF-2012-140] L=13.0 fb ⁻¹ , 8 TeV [ATLAS-CONF-2012-153] L=13.0 fb ⁻¹ , 8 TeV [ATLAS-CONF-2012-153]	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	< ct < 1 m, g aecoupiea) =0.05))) > 0) λ ₁₂₂ > 0)
W	$\hat{g} = qqq$: 3-jet resonance pair calar fluon : 2-jet resonance pair p interation (05) Jirac χ) : 'monojet' + $E_{T,miss}$	L=4.6 fb ⁻¹ , 7 TeV [1210.4813] L=4.6 fb ⁻¹ , 7 TeV [1210.4826] 10 L=10.5 fb ⁻¹ , 8 TeV [ATLAS-CONF-2012-147]	666 GeV ğ mass 00-287 GeV Sgluon mass (incl. limit from 1110.2693) 704 GeV M* scale (m _χ < 80 GeV, limit of < 687 GeV)	V for D(B)
		10 ⁻¹	1	10
*Onl	y a selection of the available mass limits on new st	ates or phenomena shown.		Mass scale [TeV]

44

All limits quoted are observed minus 1σ theoretical signal cross section uncertainty.

Searches for other particles

*Only a selection of the available mass limits on new states or phenomena shown

Overview

- Higgs production and decay
- Challenges
- Higgs search in individual channels
- Combination of signal strength and mass
- Is it the SM Higgs?
 - Couplings
 - Spin and CP
- Other searches
- Summary & Outlook

Summary & Conclusions Neutral boson discovered last year Overall production cross section compatible with prediction for SM Higgs $\mu = 1.30 \pm 0.13 (\text{stat}) \pm 0.14 (\text{sys})$ Mass of the new particle: $m_{\rm H} = 125.5 \pm 0.2({\rm stat})^{+0.5}_{-0.6}({\rm sys}) \,{\rm GeV}$ First coupling measurements in agreement with SM Higgs prediction Dedicated spin and CP studies exclude alternative models (0⁻, 1⁺, 1⁻, 2⁺) in favour of SM Higgs Severything points to the new particle being a Higgs boson!

Time evolution

only SM particles contribute to the total width

CLs method

• Test statistics Q as ratio of likelihoods: $Q = \frac{\mathcal{L}_{\text{Poiss}}(data|signal + background)}{\mathcal{L}_{\text{Poiss}}(data|background)}$

Confidence level for signal+background hypothesis

 $CL_{s+b} = P(Q \ge Q_{obs}|signal + background)$ \circ Consistency with background hypothesis $1 - CL_b = P(Q \ge Q_{obs}|background)$ \circ To avoid excluding low sensitivity regions define CL_s $CL_s = CL_{s+b}/(1 - CL_b)$

Signal hypothesis is excluded at 95% C.L. if CL_S < 0.05</p>

Inclusion of systematic uncertainties

Systematic uncertainties included in the likelihood using nuisance parameter (Θ) pdf's

 $\mathcal{L}(data|\mu,\theta) = \text{Poisson}(data|\mu \cdot s(\theta) + b(\theta)) \cdot \rho(\tilde{\theta}|\theta)$

Test statistics now defined after maximizing likelihood with respect to nuisance parameters

 $Q_{\mu} = -2\ln \frac{\mathcal{L}(data|\mu, \hat{\theta}_{\mu})}{\mathcal{L}(data|\hat{\mu}, \hat{\theta})} \qquad 0 \le \hat{\mu} \le \mu$

Ad hoc improvement of systematic uncertainties
Data can tell us the preferred value

References

H->ZZ: ATLAS-CONF-2013-013 H->WW: ATLAS-CONF-2013-030 H->WW (spin): ATLAS-CONF-2013-031 H-> && (spin): ATLAS-CONF-2013-029 H-> && ATLAS-CONF-2013-012

<u>H combination (mass): ATLAS-CONF-2013-014</u> <u>H combination (couplings): ATLAS-CONF-2013-034</u>