## The first three years of LHC, Mainz, March 22, 2013

## Rare Decays from Flavor to QCD and Back

1) $B \rightarrow K^{*} \mu^{+} \mu^{-}$@ Low Recoil
2) $\operatorname{SU}(3)$-ing 2-body decays of charm and CPX

Gudrun Hiller, Dortmund based on works with Christoph Bobeth, Danny van Dyk, Christian Hambrock, Martin Jung, Stefan Schacht, Roman Zwicky

## 1)

## Exclusive semileptonic FCNC $b \rightarrow s \mu^{+} \mu^{-}$decays

$\Delta F=1$ FCNC; sensitive to flavor in and beyond the SM. $B r_{\mathrm{SM}} \sim 10^{-6}-10^{-7}$

observed (at SM level):
$B \rightarrow K^{(*)} \mu^{+} \mu^{-}$BaBar, Belle, CDF ${ }_{6.8 \mathrm{fb}^{-1}}$ and LHCb 1ft $^{\text {b }}$ LHcb-ConF-2012-008
$B_{s} \rightarrow \Phi \mu^{+} \mu^{-}$CDF 2011 1101.1028 [hep-ex] LHCb 2012 LHcb-CoNF-2012-008
$\Lambda_{b} \rightarrow \Lambda \mu^{+} \mu^{-}$CDF $2011{ }_{1107.3753 \text { [hepex] }}$
distributions measured. precision physics started.

## $B \rightarrow K^{(*)}+2$ Leptons - Theory

Different theory in both regions - binned data needed.

- Small dilepton mass $q^{2} \leftrightarrow$ large hadronic recoil $E_{K^{*}} \gg \Lambda$ QCD Factorization bBns, Beneke, Feldmann, Seidelo 1,04
- Large $q^{2} \sim \mathcal{O}\left(m_{b}^{2}\right) \leftrightarrow$ low hadronic recoil $E_{K^{*}} \sim \Lambda$ Operator product expansion in $1 / m_{b}$ Girinstein,Piriol ' 04, Beylich, Buchalla,Feldmann'11


## THIS TALK:

- Low recoil $B \rightarrow K^{(*)} \mu^{+} \mu^{-}$predictions, pheno \& implications

Bobeth,GH, vanDyk, Wacker '10,11,12

- Extractions of hadronic form factor ratios at low recoil from data

[^0]
## Situation: Dilepton Mass Spectrum in $B \rightarrow K^{*} \mu^{+} \mu^{-}$


left-hand Fig. from 1006.5013 [hep-ph] Blue band: form factor uncertainties, red: $1 / m_{b}$ right-hand Fig. from LHCb-CONF-2012-008 Biggest source of theory uncertainty: the $B \rightarrow K^{*}$ form factors.

## Opportunity: Angular Analysis $B \rightarrow K^{*}(\rightarrow K \pi) \mu^{+} \mu^{-}$

$$
\begin{align*}
d \Gamma^{4} \sim & J d q^{2} d \cos \Theta_{l} d \cos \Theta_{K^{*}} d \Phi \text { Krüger, Sehgal,Sinha, Sinha hep-ph/9907386 } \\
J\left(q^{2}, \theta_{l}, \theta_{K^{*}}, \phi\right) & =J_{1}^{s} \sin ^{2} \theta_{K^{*}}+J_{1}^{c} \cos ^{2} \theta_{K^{*}}+\left(J_{2}^{s} \sin ^{2} \theta_{K^{*}}+J_{2}^{c} \cos ^{2} \theta_{K^{*}}\right) \cos 2 \theta_{l} \\
& +J_{3} \sin ^{2} \theta_{K^{*}} \sin ^{2} \theta_{l} \cos 2 \phi+J_{4} \sin 2 \theta_{K^{*}} \sin 2 \theta_{l} \cos \phi+J_{5} \sin 2 \theta_{K^{*}} \sin \theta_{l} \cos \phi \\
& +J_{6} \sin ^{2} \theta_{K^{*}} \cos \theta_{l}+J_{7} \sin 2 \theta_{K^{*}} \sin \theta_{l} \sin \phi \\
& +J_{8} \sin 2 \theta_{K^{*}} \sin 2 \theta_{l} \sin \phi+J_{9} \sin ^{2} \theta_{K^{*}} \sin ^{2} \theta_{l} \sin 2 \phi \tag{2.3}
\end{align*}
$$

$\Theta_{l}$ : angle between $l^{-}$and $\bar{B}$ in dilepton-CMS
$\Theta_{K^{*}}$ : angle between K and $\bar{B}$ in $K^{*}$-CMS
$\Phi$ : angle between normals of the $K \pi$ and $l^{+} l^{-}$planes
complex structure, plenty of observables, not all need full $\mathrm{d}^{4} \Gamma$.
$\Gamma \sim J_{1}-J_{2} / 3, A_{\mathrm{FB}} \sim J_{6}, A_{T}^{(2)} \sim J_{3}$ Kriger, Matias hep.ph/0502060
With full $\Delta B=1$ dimension six operators: Bobeth etal, 1212.2321 [hep-ph]

## Angular distributions 2012 from LHCb with 1 fb ${ }^{-1}$

$\mathbb{B}^{0} \rightarrow K^{* 0} \mu^{+} \mu^{-}$Angular Analysis Results

- 4D fit to 3 angles and mass
- Larger data sample enables measurements of $S_{3}$ and $A_{\text {IM }}$
- Error bars include systematic uncertainties
- Data points at average $q^{2}$ of signal candidates in data
- These are the most precise measurements to-date [preliminary]
- The results are consistent with the SM prediction [1]

$A_{T}^{2}$ and $F_{L}$ in $B \rightarrow K^{*} \mu^{+} \mu^{-}$


Figs. from 1006.5013 [hep-ph] Blue band: form factor uncertainties, red: $1 / m_{b} A_{T}^{(2)}=2 S_{3} /\left(1-F_{L}\right)$
$F_{L}$ : fraction of longitudinally polarized $K^{*}$ $A_{T}^{(2)}$ : transverse Asymmetry; Null test of SM at low $q^{2}$ Both probe form factor ratios at low recoil! polutuion from BSM right-handed currents can be controlled by e.g. $A_{T}^{(2)} @ l a r g e ~ r e c o i l ; ~ c u r r e n t l y ~ \lesssim 30 \%$ Bobeth et al '12

## $A_{T}^{2}$ and $F_{L}$ in $B \rightarrow K^{*} \mu^{+} \mu^{-}$data 2012

## BaBar

CDF
LHCb

| $q^{2}\left[\mathrm{GeV}^{2}\right]$ | $F_{L}$ | $F_{L}$ | $A_{T}^{(2)}$ | $F_{L}$ | $A_{T}^{(2)}$ |
| :---: | :---: | :---: | ---: | :---: | ---: |
| $[14.18,16]$ | $0.43_{-0.16}^{+0.13}$ | $0.40_{-0.12}^{+0.12}$ | $0.11_{-0.65}^{+0.65}$ | $0.35_{-0.06}^{+0.10}$ | $0.06_{-0.29}^{+0.24}$ |
| $[16,19 . x x]$ | $0.55_{-0.17}^{+0.15}$ | $0.19_{-0.13}^{+0.14}$ | $-0.57_{-0.57}^{+0.60}$ | $0.37_{-0.08}^{+0.07}$ | $-0.75_{-0.20}^{+0.35}$ |

## Benefits of $B \rightarrow K^{*}$ at low recoil

At low hadronic recoil transversity amplitudes $A_{i}^{L, R}, i=\perp, \|, 0$ related:

$$
A_{i}^{L, R} \propto C^{L, R} \cdot f_{i}
$$

$C^{L, R}$ : universal short-dist.-physics; $C^{L, R}=\left(C_{9}^{\mathrm{eff}} \mp C_{10}\right)+\kappa \frac{2 \hat{m}_{b}}{\hat{s}} C_{7}^{\mathrm{eff}}$ $1 / m_{b}$ - corrections parametrically suppressed $\sim \alpha_{s} / m_{b}, C_{7} / C_{9} 1 / m_{b}$ $f_{i}$ : form factors
$C^{L, R}$ drops
out in ratios:
$F_{L}=\frac{\left|A_{0}^{L}\right|^{2}+\left|A_{0}^{R}\right|^{2}}{\sum_{X=L, R}\left(\left|A_{0}^{X}\right|^{2}+\left|A_{\perp}^{X}\right|^{2}+\left|A_{\|}^{X}\right|^{2}\right)}=\frac{f_{0}^{2}}{f_{0}^{2}+f_{\perp}^{2}+f_{\|}^{2}}$
$A_{T}^{(2)}=\frac{\left|A_{\perp}^{L}\right|^{2}+\left|A_{\perp}^{R}\right|^{2}-\left|A_{\|}^{L}\right|^{2}-\left|A_{\|}^{R}\right|^{2}}{\left|A_{\perp}^{L}\right|^{2}+\left|A_{\perp}^{R}\right|^{2}+\left|A_{\|}^{L}\right|^{2}+\left|A_{\|}^{R}\right|^{2}}=\frac{f_{\perp}^{2}-f_{\|}^{2}}{f_{\perp}^{2}+f_{\|}^{2}}$



## Extracting $B \rightarrow K^{*}$ form factors from data

Using series expansion $\hat{f}_{i}(t)=\frac{(\sqrt{-z(t, 0)})^{m}(\sqrt{z(t, t-)})^{l}}{B(t) \varphi_{f}(t)} \sum_{k} \alpha_{i, k} z^{k}(t)$ best-fit results: $\alpha_{\|} / \alpha_{\perp}=0.43_{-0.08}^{+0.11}, \alpha_{0} / \alpha_{\perp}=0.15_{-0.02}^{+0.03}$



Yellow, red points; lattice QCD; blue bands: QCD sum rules Ball, Zwicky '05: green bands: $1,2 \sigma$ fit 1204.4444 [hep-ph]
Consistency between data (loreco-OPE), LCSR (small $q^{2}$ ) and lattice (large $q^{2}$ )!

1. Its great to have (even more) data.
2. With (even one) more bins the sensitivity in the fits to the $q^{2}$-shape increases.
3. If you (lattice, sum rules,..) calculate form factors, please provide also ratios (with uncertainties).
4. Data-extracted form factor ratios constitute benchmarks for lattice form factor estimations at low recoil.

## Advances in ... Extracting $B \rightarrow K^{*}$ form factors

Higher order Series Expansion; use theory input from low $q^{2}$ : LCSR
(sum rules) or $V(0) / A_{1}(0)=\left(m_{B}+m_{K^{*}}\right)^{2} /\left(2 m_{B} E_{K^{*}}\right)+\mathcal{O}\left(1 / m_{b}\right)=1.33 \pm 0.4$ (HC)


Fit ok with (mid: LCSR, right: HC) or without (left) low $q^{2}$-input.

## Advances in ... Extracting $B \rightarrow K^{*}$ form factors





Predictivity at low $q^{2}$ is obtained from low $q^{2}$ input. (Required at higher order) Preliminary - Hambrock,GH,Schacht,Zwicky ' 13 in preparation

Data-extracted form factor ratios constitute benchmark for lattice form factor estimations at low recoil.

## Exploiting $B \rightarrow K^{*} l^{+} l^{-}$at low recoil further

OPE in $1 / Q, Q=\left\{m_{b}, \sqrt{q^{2}}\right\}$ by Grinstein, Pirjol '04 with heavy quark FF relations $T_{1,2,3} \leftrightarrow V, A_{1,2}$ leads to simply transversity structure with universal short-distance $C$ and form factor coefficients $f_{i}$

$$
A_{i}^{L, R} \propto C^{L, R} \cdot f_{i}
$$

up to corrections of order $\alpha_{s} \Lambda / m_{b}$ and $\left(C_{7} / C_{9}\right) \Lambda / m_{b}$ (few percent).
Allows to design new observables which are Bobeth, GH,vanDyk 1000.5013, and '11; 12

- independent of form factors $\left(H_{T}^{(2,3,4,5)}\right)$
- independent of short-distance coefficients and test the form factors
- independent of either ones and test the theoretical low recoil framework $H_{T}^{(1)}, H_{T}^{(2)} / H_{T}^{(3)}, H_{T}^{(4)} / H_{T}^{(5)}$

$$
\begin{aligned}
& H_{T}^{(1)}=\frac{\operatorname{Re}\left(A_{0}^{L} A_{\|}^{L *}+A_{0}^{R *} A_{\|}^{R}\right)}{\sqrt{\left(\left|A_{0}^{L}\right|^{2}+\left|A_{0}^{R}\right|^{2}\right)\left(\left|A_{\|}^{L}\right|^{2}+\mid A_{\|}^{R \mid 2}\right)}}=\frac{\sqrt{2} J_{4}}{\sqrt{-J_{2}^{c}\left(2 J_{2}^{s}-J_{3}\right)}}, \\
& H_{T}^{(2)}=\frac{\operatorname{Re}\left(A_{0}^{L} A_{\perp}^{L *}-A_{0}^{R *} A_{\perp}^{R}\right)}{\sqrt{\left(\left|A_{0}^{L}\right|^{2}+\left|A_{0}^{R}\right|^{2}\right)\left(\left|A_{\perp}^{L}\right|^{2}+\left|A_{\perp}^{R}\right|^{2}\right)}}=\frac{\beta_{l} J_{5}}{\sqrt{-2 J_{2}^{c}\left(2 J_{2}^{s}+J_{3}\right)}}, \\
& H_{T}^{(3)}=\frac{\operatorname{Re}\left(A_{\|}^{L} A_{\perp}^{L *}-A_{\|}^{R *} A_{\perp}^{R}\right)}{\sqrt{\left(\left|A_{\|}^{L}\right|^{2}+\left|A_{\|}^{R}\right|^{2}\right)\left(\left|A_{\perp}^{L}\right|^{2}+\left|A_{\perp}^{R}\right|^{2}\right)}}=\frac{\beta_{l} J_{6}}{2 \sqrt{\left(2 J_{2}^{s}\right)^{2}-J_{3}^{2}}} .
\end{aligned}
$$

Low recoil Heavy-quark-OPE: $\quad H_{T}^{(1)}=1, \quad H_{T}^{(2)} / H_{T}^{(3)}=1$.
Extract them from the $B \rightarrow K^{*}(\rightarrow K \pi) \mu^{+} \mu^{-}$angular distribution.

## Further Benefits of $B \rightarrow K^{*} l^{+} l^{-}$at low recoil: BSM

Reach in low recoil-integrated observables vs Wilson coefficients $C_{9} / C_{10}$

green: SM; blue: $A_{F B}$ ( $f_{i}$-dependent) gold: $H_{T}^{(2)}$ ( $f_{i}$-free)

Fig from 1212.2321

## Further Benefits of $B \rightarrow K^{*} l^{+} l^{-}$at low recoil: BSM-CP

Reach in low recoil-integrated CP-asymmetries vs Wilson coefficients $C_{10}^{\prime}$


Fig from 1212.2321
gold: CP-asymmetry of $H_{T}^{(4)}$; blue $A_{i m} / A_{F B}=J_{9} / J_{2 s} \sim H_{T}^{(5)} / H_{T}^{(3)}$ : both $f_{i}$-free; other two $A_{8,9}$ not

## 2)

## CP Violation in Charm

$$
\begin{gathered}
\Delta A_{\mathrm{CP}}=A_{C P}\left(D^{0} \rightarrow K^{+} K^{-}\right)-A_{C P}\left(D^{0} \rightarrow \pi^{+} \pi^{-}\right) \\
\Delta A_{\mathrm{CP}}^{w a}=-0.00678 \pm 0.00147 \text { (pre-Moriond QCD 2013) } \\
\Delta A_{\mathrm{CP}}^{\mathrm{SM}} \sim \lambda^{4} \times P / T \simeq 10^{-3} \times P / T ; P / T \sim " 0 . x^{\prime} ; \\
\quad " \Delta A_{\mathrm{CP}}^{\mathrm{SM}} \text { is below permille " (traditional) }
\end{gathered}
$$

Are the data consistent with the SM? (large number of th papers)

## Many Modes Measured

ITABLE II. The observables and the data for indirect $C P$ violation used in this work; see Appendix A for removal of effects from charm and kaon mixing.

${ }^{\text {a }}$ The measurement quoted corresponds to our average. Systematic and statistical uncertainties are added in quadrature.
bur symmetrization of uncertainties.
${ }^{c}$ Modes into $K_{S, L}$ assigned to CF decays.

## SU(3)-ing Charm

| Decay $d$ | $B_{1}^{31}$ | $B_{1}^{3 / 2}$ | $B_{8}^{3}$ | $B_{8}^{32}$ | $B_{8}^{\mathrm{b}_{1}}$ | $B_{8}^{6 / 2}$ | $B_{8}^{15}$ | $B_{8}^{15} 2$ | $B_{8}^{153}$ | $B_{27}^{151}$ | $B_{27}^{15}$ | $B_{27}^{15}$ | $B_{27}^{24_{1}}$ | $B_{27}^{24}$ | $B_{27}^{42}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| SCS |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| $D^{0} \rightarrow K^{+} K^{-}$ | $\frac{1}{4 \sqrt{20}}$ | $\frac{1}{8}$ | $\frac{1}{10 \sqrt{2}}$ | $\frac{1}{4 \sqrt{5}}$ | $\frac{1}{10}$ | $\frac{1}{10 \sqrt{2}}$ | $-\frac{7}{10 \sqrt{122}}$ | $\frac{\sqrt{\frac{3}{122}}}{5}$ | $-\frac{1}{20}$ | $-\frac{31}{20 \sqrt{122}}$ | $-\frac{17}{20 \sqrt{305}}$ | $\frac{7}{41}$ | $-\frac{1}{10 \sqrt{16}}$ | $\frac{1}{10 \sqrt{2}}$ | $-\frac{13}{20 \sqrt{42}}$ |
| $D^{0} \rightarrow \pi^{+} \pi^{-}$ | $\frac{1}{4 \sqrt{10}}$ | $\frac{1}{8}$ | $\frac{1}{10 \sqrt{2}}$ | $\frac{1}{4 \sqrt{5}}$ | $-\frac{1}{10}$ | $\frac{1}{10 \sqrt{2}}$ | $-\frac{11}{10 \sqrt{122}}$ | $-\frac{2 \sqrt{\frac{2}{103}}}{5}$ | $\frac{3}{20}$ | $-\frac{23}{20 \sqrt{122}}$ | $\frac{11}{20 \sqrt{306}}$ | $-\frac{1}{40}$ | $\frac{1}{10 \sqrt{6}}$ | $-\frac{1}{10 \sqrt{2}}$ | $\frac{\sqrt{\frac{7}{11}}}{20}$ |
| $D^{0} \rightarrow \bar{K}^{0} K^{0}$ | $-\frac{1}{4 \sqrt{10}}$ | $-\frac{1}{8}$ | $\frac{1}{3 \sqrt{2}}$ | $\frac{1}{2 \sqrt{5}}$ | 0 | 0 | $-\frac{9}{5 \sqrt{122}}$ | $-\frac{1}{5 \sqrt{306}}$ | $\frac{1}{10}$ | $-\frac{9}{20 \sqrt{122}}$ | $-\frac{1}{20 \sqrt{306}}$ | $\frac{1}{40}$ | $-\frac{1}{2 \sqrt{6}}$ | $-\frac{1}{2 \sqrt{2}}$ | $\frac{19}{20 \sqrt{42}}$ |
| $D^{0} \rightarrow \pi^{0} \pi^{0}$ | $-\frac{1}{8 \sqrt{3}}$ | $-\frac{1}{8 \sqrt{2}}$ | - $\frac{1}{20}$ | $-\frac{1}{4 \sqrt{10}}$ | $\frac{1}{10 \sqrt{2}}$ | $-\frac{1}{20}$ | $\frac{11}{20 \sqrt{611}}$ | $\frac{2}{5 \sqrt{185}}$ | $-\frac{3}{20 \sqrt{2}}$ | $-\frac{57}{40 \sqrt{61}}$ | $\frac{7}{20 \sqrt{183}}$ | $\frac{1}{40 \sqrt{2}}$ | $\frac{1}{6 \sqrt{3}}$ | $\frac{1}{20}$ | $-\frac{1}{20 \sqrt{21}}$ |
| $D^{+} \rightarrow \pi^{0} \pi^{+}$ | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | $-\frac{2(1-\Delta)}{\sqrt{112}}$ | $\frac{5(1-\Delta)}{8 \sqrt{183}}$ | 0 | $\frac{1-\Delta}{4 \sqrt{3}}$ | 0 | $\frac{1-\Sigma}{8 \sqrt{21}}$ |
| $D^{+} \rightarrow \bar{K}^{0} K^{+}$ | 0 | 0 | $\frac{3}{10 \sqrt{2}}$ | $\frac{3}{4 \sqrt{5}}$ | $\frac{1}{10}$ | $-\frac{1}{10 \sqrt{2}}$ | $\frac{7}{10 \sqrt{122}}$ | $-\frac{\sqrt{\frac{9}{122}}}{5}$ | $\frac{1}{20}$ | $-\frac{3 \sqrt{\frac{2}{61}}}{5}$ | - $\frac{23}{20 \sqrt{366}}$ | $\frac{1}{5}$ | $-\frac{1}{10 \sqrt{6}}$ | $-\frac{\sqrt{2}}{6}$ | $-\frac{19}{20 \sqrt{42}}$ |
| $D_{s} \rightarrow K^{0} \pi^{+}$ | 0 | 0 | $\frac{3}{10 \sqrt{2}}$ | $\frac{3}{4 \sqrt{5}}$ | $-\frac{1}{10}$ | $\frac{1}{10 \sqrt{2}}$ | $\frac{11}{10 \sqrt{122}}$ | $\frac{2 \sqrt{\frac{2}{103}}}{5}$ | $-\frac{3}{0}$ | $-\frac{3}{5 \sqrt{122}}$ | $\frac{19}{20 \sqrt{806}}$ | $-\frac{1}{10}$ | $-\frac{\sqrt{\frac{2}{3}}}{5}$ | $-\frac{1}{10 \sqrt{2}}$ | $-\frac{19}{20 \sqrt{42}}$ |
| $D_{s} \rightarrow K^{+} \pi^{0}$ | 0 | 0 | $-\frac{3}{20}$ | $-\frac{3}{4 \sqrt{20}}$ | $\frac{1}{10 \sqrt{2}}$ | $-\frac{1}{20}$ | $-\frac{11}{20 \sqrt{611}}$ | $-\frac{2}{5 \sqrt{183}}$ | $\frac{3}{20 \sqrt{2}}$ | $-\frac{17}{10 \sqrt{61}}$ | $\frac{\sqrt{\frac{3}{60}}}{20}$ | $\frac{1}{10 \sqrt{2}}$ | $-\frac{\sqrt{3}}{10}$ | $\frac{1}{20}$ | $-\frac{\sqrt{\frac{3}{7}}}{20}$ |
| CF |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| $D^{0} \rightarrow K^{-} \pi^{+}$ | 0 | 0 | 0 | 0 | $\frac{1}{5}$ | $\frac{1}{5 \sqrt{2}}$ | $-\frac{\sqrt{\frac{2}{7}}}{5}$ | $-\frac{7}{5 \sqrt{366}}$ | $-\frac{1}{8}$ | $\frac{\sqrt{\frac{7}{6}}}{5}$ | $\frac{7}{5 \sqrt{366}}$ | $\frac{1}{5}$ | $\frac{1}{20 \sqrt{6}}$ | $\frac{1}{20 \sqrt{2}}$ | $-\frac{1}{2 \sqrt{42}}$ |
| $D^{0} \rightarrow \bar{K}^{0} \pi^{0}$ | 0 | 0 | 0 | 0 | $-\frac{1}{6 \sqrt{2}}$ | $-\frac{1}{10}$ | $\frac{1}{5 \sqrt{61}}$ | $\frac{7}{10 \sqrt{105}}$ | $\frac{1}{5 \sqrt{2}}$ | $\frac{3}{10 \sqrt{61}}$ | $\frac{7 \sqrt{\frac{3}{61}}}{20}$ | $\frac{3}{10 \sqrt{2}}$ | $-\frac{\sqrt{3}}{20}$ | $-\frac{3}{20}$ | 0 |
| $D^{+} \rightarrow \bar{K}^{0} \pi^{+}$ | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | $\frac{1}{\sqrt{122}}$ | $\frac{7}{2 \sqrt{3+16}}$ | $\frac{1}{2}$ | $-\frac{1}{4 \sqrt{6}}$ | $-\frac{1}{4 \sqrt{2}}$ | $-\frac{1}{2 \sqrt{42}}$ |
| $D_{s} \rightarrow \bar{K}^{0} K^{+}$ | 0 | 0 | 0 | 0 | $-\frac{1}{5}$ | $-\frac{1}{8 \sqrt{2}}$ | $-\frac{\sqrt{\frac{2}{6}}}{5}$ | $-\frac{7}{5 \sqrt{366}}$ | $-\frac{1}{5}$ | $\frac{\sqrt{\frac{2}{6}}}{5}$ | $\frac{7}{5 \sqrt{306}}$ | $\frac{1}{5}$ | $\frac{1}{8 \sqrt{6}}$ | $\frac{1}{5 \sqrt{2}}$ | $\frac{1}{\sqrt{42}}$ |
| DCS |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| $D^{0} \rightarrow K^{+} \pi^{-}$ | 0 | 0 | 0 | 0 | 0 | $-\frac{\sqrt{2}}{5}$ | $\frac{2 \sqrt{\frac{2}{6}}}{5}$ | $\frac{7 \sqrt{\frac{2}{183}}}{5}$ | 0 | $-\frac{2 \sqrt{\frac{7}{7}}}{5}$ | $-\frac{7 \sqrt{\frac{2}{183}}}{5}$ | 0 | $-\frac{1}{4 \sqrt{6}}$ | $\frac{3}{20 \sqrt{2}}$ | $-\frac{1}{2 \sqrt{42}}$ |
| $D^{0} \rightarrow K^{0} \pi^{0}$ | 0 | 0 | 0 | 0 | 0 | $\frac{1}{5}$ | $-\frac{2}{5 \sqrt{61}}$ | $-\frac{7}{5 \sqrt{163}}$ | 0 | $-\frac{3}{5 \sqrt{117}}$ | $-\frac{7 \sqrt{\frac{9}{10}}}{10}$ | 0 | $-\frac{\sqrt{3}}{8}$ | $-\frac{3}{40}$ | 0 |
| $D^{+} \rightarrow K^{0} \pi^{+}$ | 0 | 0 | 0 | 0 | 0 | $\frac{\sqrt{2}}{6}$ | $\frac{2 \sqrt{\frac{2}{61}}}{5}$ | $\frac{7 \sqrt{\frac{2}{183}}}{5}$ | 0 | $-\frac{2 \sqrt{\frac{7}{6}}}{5}$ | $-\frac{7 \sqrt{\frac{2}{183}}}{5}$ | 0 | $-\frac{1}{4 \sqrt{6}}$ | $-\frac{3}{20 \sqrt{2}}$ | $-\frac{1}{2 \sqrt{42}}$ |
| $D^{+} \rightarrow K^{+} \pi^{0}$ | 0 | 0 | 0 | 0 | 0 | $-\frac{1}{5}$ | $-\frac{2}{5 \sqrt{61}}$ | $-\frac{7}{5 \sqrt{183}}$ | 0 | $-\frac{3}{5 \sqrt{61}}$ | $-\frac{7 \sqrt{\frac{7}{10}}}{10}$ | 0 | $-\frac{\sqrt{3}}{8}$ | $\frac{3}{40}$ | 0 |
| $D_{s} \rightarrow K^{0} K^{+}$ | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | $-\sqrt{\frac{2}{61}}$ | $-\frac{7}{\sqrt{\text { PrE }}}$ | 0 | $\frac{1}{2 \sqrt{6}}$ | 0 | $\frac{1}{\sqrt{42}}$ |

To linear $S \overline{U(3)-X i n g, ~} 13$ complex matrix elements.
Table from 1211.3734; Previous $S U(3)$ works: Quigg'80, Pirtskhalava,Uttayara

## Does the SU(3)-expansion makes sense in Charm?



Fit works with $\mathrm{SU}(3)$-Xing of order $30 \%$. Fig from 1211.3734
$\delta_{X}$ : max ratio matrix elements; $\delta_{X}^{\prime}$ : max ratio decay amplitudes.

## Penguin enhancement?



Left: without $A_{C P}\left(D^{0} \rightarrow K_{S} K_{S}\right), A_{C P}\left(D_{s} \rightarrow K_{S} \pi^{+}\right), A_{C P}\left(D_{s} \rightarrow K^{+} \pi^{0}\right)$
Right: All data - penguins even more enhanced . Figs from 1211.3734

## Penguin enhancement?!



Left: All data from 1211.3734: $\Delta A_{\mathrm{CP}}^{w a}=-0.00678 \pm 0.00147$
Right: All data post Moriond QCD 2013: $\Delta A_{\mathrm{CP}}^{w a}=-0.0032 \pm 0.0012$ (LHCb update/new) (Fig. courtesy of M.Jung/S.Schacht). The penguins still need to be enhanced.

## What else?

(0. This is the most compehensive $\mathrm{SU}(3)-\mathrm{X}$-analysis without th bias; first full fit with 25 fit parameters.)

1. $S U(3)$-analysis predicts $A_{C P}\left(D^{0} \rightarrow K_{S} K_{S}\right)$ enhanced w.r.t $A_{C P}\left(D^{0} \rightarrow K^{+} K^{-}\right)$by $\sim 1 / \delta_{X}$.
2. Future data can reveal pattern among BSM models with CPX due to operators with diff $\operatorname{SU}(3)$ representations:

- $A_{C P}\left(D^{+} \rightarrow \pi^{+} \pi^{0}\right)$ characterizes $\Delta I=3 / 2$ in $H_{e f f .}$. ${ }^{1204.3557 \text { Grossman etal }}$
- U-spin change in $K^{+} K^{-} / \pi^{+} \pi^{-}$and $D_{s} \rightarrow K_{s} \pi^{+} / D^{+} \rightarrow K_{S} K^{+}$.

4. Fits sharpen with better data ..... and/or dynamical input.

## Stay Tuned

## Summary

- It is fantastic to witness great advances in FCNC physics and respective tests of SM and BSM physics.
- I reported on recent th advances in rare $b \rightarrow s$ and $c \rightarrow u$ decays.
- Cross talk between flavor and QCD allows for a sharper interpretation of data.
- Verdict still out.

Please see original papers for complete reference list.


[^0]:    GH, Hambrock '12, and in preparation together with Schacht, Zwicky

