Rare Decays from Flavor to QCD and Back

1) $B \rightarrow K^* \mu^+ \mu^-$ @ Low Recoil

2) SU(3)-ing 2-body decays of charm and CPX

Gudrun Hiller, Dortmund

based on works with Christoph Bobeth, Danny van Dyk, Christian Hambrock, Martin Jung, Stefan Schacht, Roman Zwicky 1)

Exclusive semileptonic FCNC $b \rightarrow s \mu^+ \mu^-$ decays

 $\Delta F = 1$ FCNC; sensitive to flavor in and beyond the SM. $Br_{\rm SM} \sim 10^{-6} - 10^{-7}$

observed (at SM level):

 $B \to K^{(*)}\mu^+\mu^-$ BaBar, Belle, CDF _{6.8 fb⁻¹} and LHCb _{1 fb⁻¹} LHCb-CONF-2012-008 $B_s \to \Phi\mu^+\mu^-$ CDF 2011 1101.1028 [hep-ex] LHCb 2012 LHCb-CONF-2012-008 $\Lambda_b \to \Lambda\mu^+\mu^-$ CDF 2011 1107.3753 [hep-ex] distributions measured. precision physics started. Different theory in both regions – binned data needed.

- Small dilepton mass $q^2 \leftrightarrow$ large hadronic recoil $E_{K^*} \gg \Lambda$ QCD Factorization BBNS, Beneke, Feldmann, Seidel'01,04
- Large $q^2 \sim \mathcal{O}(m_b^2) \leftrightarrow$ low hadronic recoil $E_{K^*} \sim \Lambda$ Operator product expansion in $1/m_b$ Grinstein, Pirjol '04, Beylich, Buchalla, Feldmann'11

THIS TALK:

• Low recoil $B \to K^{(*)}\mu^+\mu^-$ predictions, pheno & implications Bobeth,GH, vanDyk, Wacker '10,11,12

• Extractions of hadronic form factor ratios at low recoil from data

GH, Hambrock '12, and in preparation together with Schacht, Zwicky

Situation: Dilepton Mass Spectrum in $B \to K^* \mu^+ \mu^-$

left-hand Fig. from 1006.5013 [hep-ph] Blue band: form factor uncertainties, red: $1/m_b$ right-hand Fig. from LHCb-CONF-2012-008 Biggest source of theory uncertainty: the $B \rightarrow K^*$ form factors.

Opportunity: Angular Analysis $B \to K^* (\to K\pi) \mu^+ \mu^-$

 $d\Gamma^{4} \sim J dq^{2} d\cos \Theta_{l} d\cos \Theta_{K^{*}} d\Phi \quad \text{Krüger, Sehgal, Sinha, Sinha hep-ph/9907386}$ $J(q^{2}, \theta_{l}, \theta_{K^{*}}, \phi) = J_{1}^{s} \sin^{2} \theta_{K^{*}} + J_{1}^{c} \cos^{2} \theta_{K^{*}} + (J_{2}^{s} \sin^{2} \theta_{K^{*}} + J_{2}^{c} \cos^{2} \theta_{K^{*}}) \cos 2\theta_{l}$ $+ J_{3} \sin^{2} \theta_{K^{*}} \sin^{2} \theta_{l} \cos 2\phi + J_{4} \sin 2\theta_{K^{*}} \sin 2\theta_{l} \cos \phi + J_{5} \sin 2\theta_{K^{*}} \sin \theta_{l} \cos \phi$ $+ J_{6} \sin^{2} \theta_{K^{*}} \cos \theta_{l} + J_{7} \sin 2\theta_{K^{*}} \sin \theta_{l} \sin \phi$ $+ J_{8} \sin 2\theta_{K^{*}} \sin 2\theta_{l} \sin \phi + J_{9} \sin^{2} \theta_{K^{*}} \sin^{2} \theta_{l} \sin 2\phi, \qquad (2.3)$

 Θ_l : angle between l^- and \overline{B} in dilepton-CMS Θ_{K^*} : angle between K and \overline{B} in K^* -CMS Φ : angle between normals of the $K\pi$ and l^+l^- planes

complex structure, plenty of observables, not all need full $d^4\Gamma$. $\Gamma \sim J_1 - J_2/3$, $A_{\rm FB} \sim J_6$, $A_T^{(2)} \sim J_3$ Krüger, Matias hep-ph/0502060 With full $\Delta B = 1$ dimension six operators: Bobeth et al, 1212.2321 [hep-ph]

Angular distributions 2012 from LHCb with 1 fb $^{-1}$

$\mathbb{B}^{0} \rightarrow K^{*0} \mu^{+} \mu^{-}$ Angular Analysis Results

Figs. from 1006.5013 [hep-ph] Blue band: form factor uncertainties, red: $1/m_b A_T^{(2)} = 2S_3/(1 - F_L)$ F_L : fraction of longitudinally polarized K^*

 $A_T^{(2)}$: transverse Asymmetry; Null test of SM at low q^2

Both probe form factor ratios at low recoil! pollution from BSM right-handed currents can be

controlled by e.g. $A_T^{(2)}$ @large recoil; currently ≤ 30 % Bobeth et al '12

	BaBar	С	DF	LHCb				
q^2 [GeV 2]	F_L	F_L	$A_T^{(2)}$	F_L	$A_T^{(2)}$			
[14.18, 16]	$0.43_{-0.16}^{+0.13}$	$0.40^{+0.12}_{-0.12}$	$0.11_{-0.65}^{+0.65}$	$0.35_{-0.06}^{+0.10}$	$0.06_{-0.29}^{+0.24}$			
[16, 19.xx]	$0.55_{-0.17}^{+0.15}$	$0.19_{-0.13}^{+0.14}$	$-0.57^{+0.60}_{-0.57}$	$0.37\substack{+0.07 \\ -0.08}$	$-0.75_{-0.20}^{+0.35}$			

Benefits of $B \to K^*$ at low recoil

At low hadronic recoil transversity amplitudes $A_i^{L,R}$, $i = \perp, ||, 0$ related:

$$A_i^{L,R} \propto C^{L,R} \cdot f_i$$

 $C^{L,R}$: <u>universal</u> short-dist.-physics; $C^{L,R} = (C_9^{\text{eff}} \mp C_{10}) + \kappa \frac{2\hat{m}_b}{\hat{s}} C_7^{\text{eff}}$ $1/m_b$ - corrections parametrically suppressed $\sim \alpha_s/m_b, C_7/C_9 1/m_b$ f_i : form factors

Flavor to QCD and Back, Mainz, March $20 f_3^{2} GeV^2$

Using series expansion $\hat{f}_i(t) = \frac{(\sqrt{-z(t,0)})^m (\sqrt{z(t,t_-)})^l}{B(t) \varphi_f(t)} \sum_k \alpha_{i,k} z^k(t)$ best-fit results: $\alpha_{\parallel} / \alpha_{\perp} = 0.43^{+0.11}_{-0.08}, \ \alpha_0 / \alpha_{\perp} = 0.15^{+0.03}_{-0.02}$

Yellow, red points; lattice QCD; blue bands: QCD sum rules Ball, Zwicky '05: green bands: $1, 2\sigma$ fit 1204.4444 [hep-ph]

Consistency between data (loreco-OPE), LCSR (small q^2) and lattice (large q^2)!

1. Its great to have (even more) data.

2. With (even one) more bins the sensitivity in the fits to the q^2 -shape increases.

3. If you (lattice, sum rules,..) calculate form factors, please provide also ratios (with uncertainties).

4. Data-extracted form factor ratios constitute benchmarks for lattice form factor estimations at low recoil.

Advances in ... Extracting $B \to K^*$ form factors

Higher order Series Expansion; use theory input from low q^2 : LCSR (sum rules) or $V(0)/A_1(0) = (m_B + m_{K^*})^2/(2m_B E_{K^*}) + O(1/m_b) = 1.33 \pm 0.4$ (HC)

Predictivity at low q^2 is obtained from low q^2 input. (Required at higher order) Preliminary – Hambrock, GH, Schacht, Zwicky '13 in preparation

Data-extracted form factor ratios constitute benchmark for lattice form factor estimations at low recoil.

OPE in 1/Q, $Q = \{m_b, \sqrt{q^2}\}$ by Grinstein, Pirjol '04 with heavy quark FF relations $T_{1,2,3} \leftrightarrow V, A_{1,2}$ leads to simply transversity structure with universal short-distance *C* and form factor coefficients f_i

$$A_i^{L,R} \propto C^{L,R} \cdot f_i$$

up to corrections of order $\alpha_s \Lambda/m_b$ and $(C_7/C_9)\Lambda/m_b$ (few percent).

Allows to design new observables which are Bobeth, GH, vanDyk 1006.5013, and '11,'12 – independent of form factors ($H_T^{(2,3,4,5)}$)

- independent of short-distance coefficients and test the form factors
- independent of either ones and test the theoretical low recoil framework $H_T^{(1)}, H_T^{(2)}/H_T^{(3)}, H_T^{(4)}/H_T^{(5)}$

Exploiting $B \rightarrow K^* l^+ l^-$ at low recoil further

$$\begin{split} H_T^{(1)} &= \frac{\operatorname{Re}(A_0^L A_{\parallel}^{L*} + A_0^{R*} A_{\parallel}^R)}{\sqrt{\left(|A_0^L|^2 + |A_0^R|^2\right)\left(|A_{\parallel}^L|^2 + |A_{\parallel}^R|^2\right)}} = \frac{\sqrt{2}J_4}{\sqrt{-J_2^c\left(2J_2^s - J_3\right)}},\\ H_T^{(2)} &= \frac{\operatorname{Re}(A_0^L A_{\perp}^{L*} - A_0^{R*} A_{\perp}^R)}{\sqrt{\left(|A_0^L|^2 + |A_0^R|^2\right)\left(|A_{\perp}^L|^2 + |A_{\perp}^R|^2\right)}} = \frac{\beta_l J_5}{\sqrt{-2J_2^c\left(2J_2^s + J_3\right)}},\\ H_T^{(3)} &= \frac{\operatorname{Re}(A_{\parallel}^L A_{\perp}^{L*} - A_{\parallel}^{R*} A_{\perp}^R)}{\sqrt{\left(|A_{\parallel}^L|^2 + |A_{\parallel}^R|^2\right)\left(|A_{\perp}^L|^2 + |A_{\perp}^R|^2\right)}} = \frac{\beta_l J_6}{2\sqrt{(2J_2^s)^2 - J_3^2}}. \end{split}$$

Low recoil Heavy-quark-OPE: $H_T^{(1)} = 1$, $H_T^{(2)}/H_T^{(3)} = 1$. Extract them from the $B \to K^* (\to K\pi) \mu^+ \mu^-$ angular distribution.

Further Benefits of $B \rightarrow K^* l^+ l^-$ at low recoil: BSM

green: SM; blue: A_{FB} (f_i -dependent) gold: $H_T^{(2)}$ (f_i -free)

Fig from 1212.2321

Further Benefits of $B \rightarrow K^* l^+ l^-$ at low recoil: BSM-CP

Reach in low recoil-integrated CP-asymmetries vs Wilson coefficients C'_{10}

Fig from 1212.2321

gold: CP-asymmetry of $H_T^{(4)}$; blue $A_{im}/A_{FB} = J_9/J_{2s} \sim H_T^{(5)}/H_T^{(3)}$: both f_i -free; other two $A_{8,9}$ not

2)

$$\begin{split} \Delta A_{\rm CP} &= A_{CP} (D^0 \to K^+ K^-) - A_{CP} (D^0 \to \pi^+ \pi^-) \\ \Delta A_{\rm CP}^{wa} &= -0.00678 \pm 0.00147 \text{ (pre-Moriond QCD 2013)} \\ \Delta A_{\rm CP}^{\rm SM} &\sim \lambda^4 \times P/T \simeq 10^{-3} \times P/T; \ P/T \sim "0.x"; \\ "\Delta A_{\rm CP}^{\rm SM} \text{ is below permille " (traditional)} \end{split}$$

Are the data consistent with the SM? (large number of th papers)

Many Modes Measured

TABLE II. The observables and the data for indirect CP violation used in this work; see Appendix A for removal of effects from charm and kaon mixing.

Observable	Measurement	References							
SCS CP asymmetries									
$\Delta a_{CP}^{dir}(K^+K^-, \pi^+\pi^-)$	-0.00678 ± 0.00147	[1-4,28,29]							
$\Sigma a_{CP}^{dir}(K^+K^-, \pi^+\pi^-)$	$+0.0014 \pm 0.0039$	^a [1-3,28,30]							
$A_{CP}(D^0 \rightarrow K_S K_S)$	-0.23 ± 0.19	[31]							
$A_{CP}(D^0 \rightarrow \pi^0 \pi^0)$	$+0.001 \pm 0.048$	[31]							
$A_{CP}(D^+ \rightarrow \pi^0 \pi^+)$	$+0.029 \pm 0.029$	[32]							
$A_{CP}(D^+ \rightarrow K_S K^+)$	-0.0011 ± 0.0025	[32-35]							
$A_{CP}(D_s \rightarrow K_S \pi^+)$	$+0.031 \pm 0.015$	^a [32,33,36]							
$A_{CP}(D_s \rightarrow K^+ \pi^0)$	$+0.266 \pm 0.228$	[32]							
Indirect CP violation									
a ind CP	$(-0.027 \pm 0.163) \times 10^{-2}$	[4]							
$\delta_L = 2 \operatorname{Re}(\varepsilon) / (1 + \varepsilon)$	²) $(3.32 \pm 0.06) \times 10^{-3}$	[37]							
$K^+\pi^-$	strong phase difference								
$\delta_{K\pi}$	$21.4^{\circ} \pm 10.4^{\circ}$	ь[4]							
S	CS branching ratios								
$\mathcal{B}(D^0 \to K^+ K^-)$	$(3.96 \pm 0.08) \times 10^{-3}$	[37]							
$\mathcal{B}(D^0 o \pi^+ \pi^-)$	$(1.401 \pm 0.027) \times 10^{-3}$	[37]							
$\mathcal{B}(D^0 \to K_S K_S)$	$(0.17 \pm 0.04) \times 10^{-3}$	[37]							
$\mathcal{B}(D^0 \to \pi^0 \pi^0)$	$(0.80 \pm 0.05) \times 10^{-3}$	[37]							
$\mathcal{B}(D^+ \to \pi^0 \pi^+)$	$(1.19 \pm 0.06) \times 10^{-3}$	[37]							
$\mathcal{B}(D^+ \to K_S K^+)$	$(2.83 \pm 0.16) \times 10^{-3}$	[37]							
$\mathcal{B}(D_s \to K_S \pi^+)$	$(1.21 \pm 0.08) \times 10^{-3}$	[37]							
$\mathcal{B}(D_s \to K^+ \pi^0)$	$(0.62 \pm 0.21) \times 10^{-3}$	[37]							
CF ^c branching ratios									
$\mathcal{B}(D^0 \to K^- \pi^+)$	$(3.88 \pm 0.05) \times 10^{-2}$	[37]							
$\mathcal{B}(D^0 \to K_S \pi^0)$	$(1.19 \pm 0.04) \times 10^{-2}$	[37]							
$\mathcal{B}(D^0 \to K_L \pi^0)$	$(1.00 \pm 0.07) \times 10^{-2}$	[37]							
$\mathcal{B}(D^+ \to K_S \pi^+)$	$(1.47 \pm 0.07) \times 10^{-2}$	[37]							
$\mathcal{B}(D^+ \to K_L \pi^+)$	$(1.46 \pm 0.05) \times 10^{-2}$	[37]							
$\mathcal{B}(D_s \to K_S K^+)$	$(1.45 \pm 0.05) \times 10^{-2}$	*[37,38]							
DCS branching ratios									
$\mathcal{B}(D^0 \to K^+ \pi^-)$	$(1.47 \pm 0.07) \times 10^{-4}$	[37]							
$\mathcal{B}(D^+ \to K^+ \pi^0)$	$(1.83 \pm 0.26) \times 10^{-4}$	[37]							

^aThe measurement quoted corresponds to our average. Systematic and statistical uncertainties are added in quadrature. ^bOur symmetrization of uncertainties. ^cModes into $K_{S,L}$ assigned to CF decays.

SU(3)-ing Charm

Decay d	$B_1^{3_1}$	$B_1^{3_2}$	$B_8^{3_1}$	$B_8^{3_2}$	$B_8^{\bar{6}_1}$	$B_8^{\bar{6}_2}$	$B_8^{15_1}$	$-B_8^{15_2}$	B_8^{153}	$B_{27}^{15_1}$	$B_{27}^{15_2}$	$B_{27}^{15_3}$	$B_{27}^{24_1}$	$B_{27}^{24_2}$	B_{27}^{42}
SCS															
$D^0 \to K^+ K^-$	$\frac{1}{4\sqrt{10}}$	$\frac{1}{8}$	$\frac{1}{10\sqrt{2}}$	$\frac{1}{4\sqrt{5}}$	$\frac{1}{10}$	$-\frac{1}{10\sqrt{2}}$	$-\frac{7}{10\sqrt{122}}$	$\frac{\sqrt{\frac{3}{122}}}{5}$	$-\frac{1}{20}$	$-\frac{31}{20\sqrt{122}}$	$-\frac{17}{20\sqrt{366}}$	$\frac{7}{40}$	$-\frac{1}{10\sqrt{6}}$	$\frac{1}{10\sqrt{2}}$	$-\frac{13}{20\sqrt{42}}$
$D^0 \to \pi^+\pi^-$	$\frac{1}{4\sqrt{10}}$	$\frac{1}{8}$	$\frac{1}{10\sqrt{2}}$	$\frac{1}{4\sqrt{5}}$	$-\frac{1}{10}$	$\frac{1}{10\sqrt{2}}$	$-\frac{11}{10\sqrt{122}}$	$-\frac{2\sqrt{\frac{2}{183}}}{5}$	$\frac{3}{20}$	$-\frac{23}{20\sqrt{122}}$	$\frac{11}{20\sqrt{366}}$	$-\frac{1}{40}$	$\frac{1}{10\sqrt{6}}$	$-\frac{1}{10\sqrt{2}}$	$\frac{\sqrt{\frac{7}{6}}}{20}$
$D^0 \to \bar{K}^0 K^0$	$-\frac{1}{4\sqrt{10}}$	$-\frac{1}{8}$	$\frac{1}{5\sqrt{2}}$	$\frac{1}{2\sqrt{5}}$	0	0	$-\frac{9}{5\sqrt{122}}$	$-\frac{1}{5\sqrt{366}}$	$\frac{1}{10}$	$-\frac{9}{20\sqrt{122}}$	$-\frac{1}{20\sqrt{366}}$	$\frac{1}{40}$	$-\frac{1}{2\sqrt{6}}$	$-\frac{1}{2\sqrt{2}}$	$\frac{19}{20\sqrt{42}}$
$D^0 \rightarrow \pi^0 \pi^0$	$-\frac{1}{8\sqrt{5}}$	$-\frac{1}{8\sqrt{2}}$	$-\frac{1}{20}$	$-\frac{1}{4\sqrt{10}}$	$\frac{1}{10\sqrt{2}}$	$-\frac{1}{20}$	$\frac{11}{20\sqrt{61}}$	$\frac{2}{5\sqrt{183}}$	$-\frac{3}{20\sqrt{2}}$	$-\frac{57}{40\sqrt{61}}$	$\frac{7}{20\sqrt{183}}$	$\frac{1}{40\sqrt{2}}$	$\frac{1}{5\sqrt{3}}$	$\frac{1}{20}$	$-\frac{1}{20\sqrt{21}}$
$D^+ \rightarrow \pi^0 \pi^+$	0	0	0	0	0	0	0	0	0	$-\frac{2(1-\overline{\Delta})}{\sqrt{61}}$	$\frac{5(1-\Delta)}{8\sqrt{183}}$	0	$\frac{1-\tilde{\Delta}}{4\sqrt{3}}$	0	$\frac{1-\bar{\Delta}}{8\sqrt{21}}$
$D^+ \to \bar{K}^0 K^+$	0	0	$\frac{3}{10\sqrt{2}}$	$\frac{3}{4\sqrt{5}}$	$\frac{1}{10}$	$-\frac{1}{10\sqrt{2}}$	$\frac{7}{10\sqrt{122}}$	$-\frac{\sqrt{\frac{3}{122}}}{5}$	$\frac{1}{20}$	$-\frac{3\sqrt{\frac{2}{61}}}{5}$	$-\frac{23}{20\sqrt{366}}$	$\frac{1}{5}$	$-\frac{1}{10\sqrt{6}}$	$-\frac{\sqrt{2}}{5}$	$-\frac{19}{20\sqrt{42}}$
$D_{\delta} \rightarrow K^0 \pi^+$	0	0	$\frac{3}{10\sqrt{2}}$	$\frac{3}{4\sqrt{5}}$	$-\frac{1}{10}$	$\frac{1}{10\sqrt{2}}$	$\frac{11}{10\sqrt{122}}$	$\frac{2\sqrt{\frac{2}{183}}}{5}$	$-\frac{3}{20}$	$-\frac{3}{5\sqrt{122}}$	$\frac{19}{20\sqrt{366}}$	$-\frac{1}{10}$	$-\frac{\sqrt{\frac{2}{3}}}{5}$	$-\frac{1}{10\sqrt{2}}$	$-\frac{19}{20\sqrt{42}}$
$D_s \rightarrow K^+ \pi^0$	0	0	$-\frac{3}{20}$	$-\frac{3}{4\sqrt{10}}$	$\frac{1}{10\sqrt{2}}$	$-\frac{1}{20}$	$-\frac{11}{20\sqrt{61}}$	$-\frac{2}{5\sqrt{183}}$	$\frac{3}{20\sqrt{2}}$	$-\frac{17}{10\sqrt{61}}$	$\frac{\sqrt{\frac{3}{61}}}{20}$	$\frac{1}{10\sqrt{2}}$	$-\frac{\sqrt{3}}{10}$	$\frac{1}{20}$	$-\frac{\sqrt{\frac{3}{7}}}{20}$
							С	F							
$D^0 \to K^- \pi^+$	0	0	0	0	$\frac{1}{5}$	$\frac{1}{5\sqrt{2}}$	$-\frac{\sqrt{\frac{2}{61}}}{5}$	$-\frac{7}{5\sqrt{366}}$	$-\frac{1}{5}$	$\frac{\sqrt{\frac{2}{61}}}{5}$	$\frac{7}{5\sqrt{366}}$	$\frac{1}{5}$	$\frac{1}{20\sqrt{6}}$	$\frac{1}{20\sqrt{2}}$	$-\frac{1}{2\sqrt{42}}$
$D^0\to \bar{K}^0\pi^0$	0	0	0	0	$-\frac{1}{5\sqrt{2}}$	$-\frac{1}{10}$	$\frac{1}{5\sqrt{61}}$	$\frac{7}{10\sqrt{183}}$	$\frac{1}{5\sqrt{2}}$	$\frac{3}{10\sqrt{61}}$	$\frac{7\sqrt{\frac{3}{61}}}{20}$	$\frac{3}{10\sqrt{2}}$	$-\frac{\sqrt{3}}{20}$	$-\frac{3}{20}$	0
$D^+ \rightarrow \bar{K}^0 \pi^+$	0	0	0	0	0	0	0	0	0	$\frac{1}{\sqrt{122}}$	$\frac{7}{2\sqrt{366}}$	12	$-\frac{1}{4\sqrt{6}}$	$-\frac{1}{4\sqrt{2}}$	$-\frac{1}{2\sqrt{42}}$
$D_s \rightarrow \bar{K}^0 K^+$	0	0	0	0	$-\frac{1}{5}$	$-\frac{1}{5\sqrt{2}}$	$-\frac{\sqrt{\frac{2}{61}}}{5}$	$-\frac{7}{5\sqrt{366}}$	$-\frac{1}{5}$	$\frac{\sqrt{\frac{2}{61}}}{5}$	$\frac{7}{5\sqrt{366}}$	$\frac{1}{5}$	$\frac{1}{5\sqrt{6}}$	$\frac{1}{5\sqrt{2}}$	$\frac{1}{\sqrt{42}}$
	DCS														
$D^0 \to K^+ \pi^-$	0	0	0	0	0	$-\frac{\sqrt{2}}{5}$	$\frac{2\sqrt{\frac{2}{61}}}{5}$	$\frac{7\sqrt{\frac{2}{183}}}{5}$	0	$-\frac{2\sqrt{\frac{2}{61}}}{5}$	$-\frac{7\sqrt{\frac{2}{183}}}{5}$	0	$-\frac{1}{4\sqrt{6}}$	$\frac{3}{20\sqrt{2}}$	$-\frac{1}{2\sqrt{42}}$
$D^0 \to K^0 \pi^0$	0	0	0	0	0	$\frac{1}{5}$	$-\frac{2}{5\sqrt{61}}$	$-\frac{7}{5\sqrt{183}}$	0	$-\frac{3}{5\sqrt{61}}$	$-\frac{7\sqrt{\frac{3}{61}}}{10}$	0	$-\frac{\sqrt{3}}{8}$	$-\frac{3}{40}$	0
$D^+ \to K^0 \pi^+$	0	0	0	0	0	$\frac{\sqrt{2}}{5}$	$\frac{2\sqrt{\frac{2}{61}}}{5}$	$\frac{7\sqrt{\frac{2}{183}}}{5}$	0	$-\frac{2\sqrt{\frac{2}{61}}}{5}$	$-\frac{7\sqrt{\frac{2}{183}}}{5}$	0	$-\frac{1}{4\sqrt{6}}$	$-\frac{3}{20\sqrt{2}}$	$-\frac{1}{2\sqrt{42}}$
$D^+ \to K^+ \pi^0$	0	0	0	0	0	$-\frac{1}{5}$	$-\frac{2}{5\sqrt{61}}$	$-\frac{7}{5\sqrt{183}}$	0	$-\frac{3}{5\sqrt{61}}$	$-\frac{7\sqrt{\frac{3}{61}}}{10}$	0	$-\frac{\sqrt{3}}{8}$	$\frac{3}{40}$	0
$D_s \to K^0 K^+$	0	0	0	0	0	0	0	0	0	$-\sqrt{\frac{2}{61}}$	$-\frac{7}{\sqrt{366}}$	0	$\frac{1}{2\sqrt{6}}$	0	$\frac{1}{\sqrt{42}}$

To linear SU(3)-Xing, 13 complex matrix elements.

Table from 1211.3734; Previous SU(3) works: Quigg'80, Pirtskhalava, Uttayara

Does the SU(3)-expansion makes sense in Charm?

Fit works with SU(3)-Xing of order 30 %. Fig from 1211.3734 δ_X : max ratio matrix elements; δ'_X : max ratio decay amplitudes.

Penguin enhancement?

Left: without $A_{CP}(D^0 \to K_S K_S)$, $A_{CP}(D_s \to K_S \pi^+)$, $A_{CP}(D_s \to K^+ \pi^0)$ Right: All data – penguins even more enhanced . Figs from 1211.3734

Penguin enhancement?!

Left: All data from 1211.3734: $\Delta A_{\rm CP}^{wa} = -0.00678 \pm 0.00147$ Right: All data post Moriond QCD 2013: $\Delta A_{\rm CP}^{wa} = -0.0032 \pm 0.0012$ (LHCb update/new) (Fig. courtesy of M.Jung/S.Schacht). The penguins still need to be enhanced. (0. This is the most compehensive SU(3)-X-analysis without th bias; first full fit with 25 fit parameters.)

1. SU(3)-analysis predicts $A_{CP}(D^0 \to K_S K_S)$ enhanced w.r.t $A_{CP}(D^0 \to K^+ K^-)$ by $\sim 1/\delta_X$.

2. Future data can reveal pattern among BSM models with CPX due to operators with diff SU(3) representations:

- $A_{CP}(D^+ \to \pi^+ \pi^0)$ characterizes $\Delta I = 3/2$ in H_{eff} . 1204.3557 Grossman et al
- U-spin change in $K^+K^-/\pi^+\pi^-$ and $D_s \to K_s\pi^+/D^+ \to K_SK^+$.
- 4. Fits sharpen with better data and/or dynamical input.

Stay Tuned

- It is fantastic to witness great advances in FCNC physics and respective tests of SM and BSM physics.
- I reported on recent th advances in rare $b \rightarrow s$ and $c \rightarrow u$ decays.
- Cross talk between flavor and QCD allows for a sharper interpretation of data.
- Verdict still out.

Please see original papers for complete reference list.