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Importance of flavor at 
high pT

Flavor can… 

• Hide new physics: searches are optimized to 
the flavor trivial case

• Render new physics more visible, but not in 
the channels we are studying so far
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Higgs
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Supersymmetry
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,missT
E) : 'monojet' + χWIMP interaction (D5, Dirac  

Scalar gluon : 2-jet resonance pair
 qqq : 3-jet resonance pair→ g~
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+
1
χ∼, -
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+
1
χ∼

,missTEBilinear RPV CMSSM : 1 lep + 7 j's + 
 resonanceτ)+µe(→τν

∼+X, τν
∼→LFV : pp

 resonanceµe+→τν
∼+X, τν

∼→LFV : pp
 + heavy displaced vertexµ (RPV) : µ qq→ 0

1
χ∼

τ∼GMSB : stable 
 (full detector)γβ, β R-hadrons : low t~Stable 
 (full detector)γβ, β R-hadrons : low g~Stable 

±

1
χ∼ pair prod. (AMSB) : long-lived ±

1
χ∼Direct 

,missTE : 3 lep + 0
1
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1
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)*( W→ 0
2
χ∼
±

1
χ∼

,missT
E) : 3 lep + νν∼l(Ll

~
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1
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1
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1
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,missTE : 2 lep + 0
1
χ∼l→l~, Ll

~
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~ ,missT
Ell) + b-jet + → (natural GMSB) : Z(t~t~ ,missTE : 0/1/2 lep (+ b-jets) + 0

1
χ∼t→t~, t~t~

,missTE : 1 lep + b-jet + 0
1
χ∼t→t~, t~t~

,missTE : 2 lep + ±

1
χ∼b→t~ (medium), t~t~

,missTE : 1 lep + b-jet + ±

1
χ∼b→t~ (medium), t~t~

,missTE : 1/2 lep (+ b-jet) + ±

1
χ∼b→t~ (light), t~t~ ,missTE : 3 lep + j's + ±

1
χ∼t→1b~, b~b~

,missTE : 0 lep + 2-b-jets + 0
1
χ∼b→1b~, b~b~

,missTE) : 0 lep + 3 b-j's + t~ (virtual 0
1
χ∼tt→g~

,missTE) : 0 lep + multi-j's + t~ (virtual 0
1
χ∼tt→g~

,missTE) : 3 lep + j's + t~ (virtual 0
1
χ∼tt→g~

,missTE) : 2 lep (SS) + j's + t~ (virtual 0
1
χ∼tt→g~

,missTE) : 0 lep + 3 b-j's + b~ (virtual 0
1
χ∼bb→g~

,missTEGravitino LSP : 'monojet' + 
,missTEGGM (higgsino NLSP) : Z + jets + ,missT

E + b + γGGM (higgsino-bino NLSP) : ,missT
E + lep + γGGM (wino NLSP) : ,missT
E + γγGGM (bino NLSP) : ,missT
E + 0-1 lep + j's + τ NLSP) : 1-2 τ∼GMSB ( ,missTE NLSP) : 2 lep (OS) + j's + l~GMSB (

,missTE) : 1 lep + j's + ±
χ∼qq→g~ (±

χ∼Gluino med. 
,missTEPheno model : 0 lep + j's + 
,missTEPheno model : 0 lep + j's + 
,missTEMSUGRA/CMSSM : 1 lep + j's + 
,missTEMSUGRA/CMSSM : 0 lep + j's + 

M* scale  < 80 GeV, limit of < 687 GeV for D8)χm(704 GeV , 8 TeV [ATLAS-CONF-2012-147]-1=10.5 fbL

sgluon mass (incl. limit from 1110.2693)100-287 GeV , 7 TeV [1210.4826]-1=4.6 fbL

 massg~666 GeV , 7 TeV [1210.4813]-1=4.6 fbL

 massl~  > 0)122λ or 121λ), τl
~
(m)=µl

~
(m)=el

~
(m) > 100 GeV, 0

1
χ
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1
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 > 0)122λ or 121λ) > 300 GeV, 0

1
χ
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 massg~ = q~  < 1 mm)LSPτ(c1.2 TeV , 7 TeV [ATLAS-CONF-2012-140]-1=4.7 fbL
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∼ =0.05)1(2)33λ=0.10, ,
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∼ =0.05)132λ=0.10, ,
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 massq~  decoupled)g~ < 1 m, τ, 1 mm < c-510× < 1.5211
,
λ < -510×(0.3700 GeV , 7 TeV [1210.7451]-1=4.4 fbL

 massτ∼  < 20)β(5 < tan300 GeV , 7 TeV [1211.1597]-1=4.7 fbL
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 massg~ ) < 200 GeV)0

1
χ
∼(m(1.15 TeV , 8 TeV [ATLAS-CONF-2012-145]-1=12.8 fbL

 massg~ ) < 300 GeV)0

1
χ
∼(m(1.00 TeV , 8 TeV [ATLAS-CONF-2012-103]-1=5.8 fbL

 massg~ ) < 300 GeV)0

1
χ
∼(m(860 GeV , 8 TeV [ATLAS-CONF-2012-151]-1=13.0 fbL

 massg~ ) < 300 GeV)0

1
χ
∼(m(850 GeV , 8 TeV [ATLAS-CONF-2012-105]-1=5.8 fbL
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1
χ
∼(m(1.24 TeV , 8 TeV [ATLAS-CONF-2012-145]-1=12.8 fbL

 scale1/2F  eV)-4) > 10G
~

(m(645 GeV , 8 TeV [ATLAS-CONF-2012-147]-1=10.5 fbL
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~

(m(690 GeV , 8 TeV [ATLAS-CONF-2012-152]-1=5.8 fbL

 massg~ ) > 220 GeV)0

1
χ
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 massg~619 GeV , 7 TeV [ATLAS-CONF-2012-144]-1=4.8 fbL

 massg~ ) > 50 GeV)0

1
χ
∼(m(1.07 TeV , 7 TeV [1209.0753]-1=4.8 fbL

 massg~  > 20)β(tan1.20 TeV , 7 TeV [1210.1314]-1=4.7 fbL

 massg~  < 15)β(tan1.24 TeV , 7 TeV [1208.4688]-1=4.7 fbL

 massg~ ))g~(m)+0
χ
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1) = ±
χ
∼(m) < 200 GeV, 0
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χ
∼(m(900 GeV , 7 TeV [1208.4688]-1=4.7 fbL

 massq~ )0

1
χ
∼) < 2 TeV, light g~(m(1.38 TeV , 8 TeV [ATLAS-CONF-2012-109]-1=5.8 fbL

 massg~ )0

1
χ
∼) < 2 TeV, light q~(m(1.18 TeV , 8 TeV [ATLAS-CONF-2012-109]-1=5.8 fbL

 massg~ = q~1.24 TeV , 8 TeV [ATLAS-CONF-2012-104]-1=5.8 fbL
 massg~ = q~1.50 TeV , 8 TeV [ATLAS-CONF-2012-109]-1=5.8 fbL

Only a selection of the available mass limits on new states or phenomena shown.*
 theoretical signal cross section uncertainty.σAll limits quoted are observed minus 1

-1 = (2.1 - 13.0) fbLdt∫
 = 7, 8 TeVs

ATLAS
Preliminary

7 TeV results

8 TeV results

ATLAS SUSY Searches* - 95% CL Lower Limits (Status: Dec 2012)

Colored susy > TeV ?  
colored sparticles

Fermi scale TeV
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 qqq : 3-jet resonance pair→ g~

,missTE : 4 lep + 
e
νµ,eµνee→

0
1
χ∼, 0

1
χ∼l→Ll

~, 
-
Ll

~+
Ll

~ ,missTE : 4 lep + 
e
νµ,eµνee→

0
1
χ∼, 0

1
χ∼W→

+
1
χ∼, -

1
χ∼

+
1
χ∼

,missTEBilinear RPV CMSSM : 1 lep + 7 j's + 
 resonanceτ)+µe(→τν

∼+X, τν
∼→LFV : pp

 resonanceµe+→τν
∼+X, τν

∼→LFV : pp
 + heavy displaced vertexµ (RPV) : µ qq→ 0
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τ∼GMSB : stable 
 (full detector)γβ, β R-hadrons : low t~Stable 
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Only a selection of the available mass limits on new states or phenomena shown.*
 theoretical signal cross section uncertainty.σAll limits quoted are observed minus 1
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ATLAS
Preliminary

7 TeV results

8 TeV results

ATLAS SUSY Searches* - 95% CL Lower Limits (Status: Dec 2012)
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Natural Ascetic susySUSY In the Era of Austerity
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• “Ascetic” SUSY spectrum is 
completely consistent with the 
5 fb-1 constraints, and helps 
with SUSY flavor problem

For comparison with the LHC limits, we have also shown in Fig. 3, the strongest limit

from the Tevatron, which comes from the D0 sbottom search with 5.2 fb�1. This search sets

limits on sbottom pair production, with the decay b̃ ⇥ bÑ1. For the left-handed spectrum,

this limit applies directly to the sbottom, which decays b̃L ⇥ bH̃0 for the mass range of

interest (the decay to top and chargino is squeezed out). For the right-handed stop, the

dominant decay is t̃R ⇥ bH̃±, which means that the stop acts like a sbottom, from the point

of view of the Tevatron search7. We note that the Tevatron limit only applies for higgsinos

just above the LEP-2 limit, mH̃ < 110 GeV, and we see that the Tevatron has been surpassed

by the LHC in this parameter space.
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FIG. 3: The LHC limits on the left-handed stop/sbottom (left) and right-handed stop (right), with

a higgsino LSP. The axes correspond to the stop pole mass and the higgsino mass. We find that the

strongest limits on this scenario come from searches for jets plus missing energy. For comparison,

we show the D0 limit with 5.2 fb�1 (green), which only applies for mÑ1
<� 110 GeV, and has been

surpassed by the LHC limits.

7 In order to apply the Tevatron sbottom limit to right-handed stops, we have assumed that the decay

products of the charged higgsino are soft enough not to e�ect the selection, which applies when the mass

splitting between the charged and neutral higgsino is small
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Figure 2: Expected and observed 95% C.L. exclusion limits in the g̃ → tt̄χ̃0
1 (via off mass-shell t̃,

mt̃ = 1.2 TeV) simplified model as a function of the gluino and neutralino masses, together with existing

limits [26]. The lower part of the ±1σ band lies outside the range of the figure. The upper production

cross section limits at 95% C.L. are also shown.
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tion of the gluino and stop masses assuming that mχ̃±
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regions, limits have been derived in the context of simplified models where top quarks are produced

in gluino decays and MSUGRA/CMSSM scenarios. In all these signal models, gluino masses below

550 GeV are excluded within the parameter space considered and gluino masses up to 700-750 GeV can

be excluded depending on the model parameters. The results of this analysis are comparable to other

ATLAS searches [26, 64, 65] and in some cases they extend the current exclusion limits on the gluino
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Natural EWSB in times of austerity
Fine-tuning of (Higgs mass)2

of naturalness can be reduced to a one-dimensional problem as in the Standard Model

V = m2
H |H|2 + �|H|4 (1)

where m2
H will be in general a linear combination of the various masses of the Higgs fields.

Each contribution to �m2
H to the Higgs mass naturally should be of the order or less than m2

H

itself. Therefore �m2
H/m2

H should not be large. By using m2
h = �2m2

H one usually defines

as a measure of fine-tuning
Barbieri:1987fn,Kitano:2006gv
[? ? ]

� ⌘ 2�m2
H

m2
h

(2)

where m2
h is the Higgs boson physical mass in the decoupling regime, or some linear com-

bination of the physical neutral Higgs bosons in fully mixed scenarios. As it is well known,

increasing the physical Higgs boson mass (i.e.the quartic coupling) alleviates the fine-tuning.

In a SUSY theory at tree level m2
H will include the µ term. Given the size of the top

mass, the soft mass of Higgs field coupling to the up-type quarks mHu is (quite model

independently) also among them. Whether the soft mass for the down-type Higgs, mHd
or

other soft terms in an extended Higgs sector should be as light as µ and mHu is instead a

model dependent question, and a heavier mHd
can even lead to improvements

Dine:1997qj,Csaki:2008sr
[? ? ]. The

phenomenological key point for direct searches for SUSY particles is therefore the lightness

of the Higgsinos since their mass is directly controlled by µ

µ <⇠ 190 GeV
✓

mh

120 GeV

◆ 
��1

20%

!�1/2

(3)

At loop level there are additional constraints. The Higgs potential in a SUSY theory

is corrected by both gauge and Yukawa interactions, the largest contribution coming from

the top-stop loop. In extensions of the MSSM there will also be corrections coming from

Higgs self-interactions, that can be important for large values of the couplings. The radiative

corrections to m2
H proportional to the top Yukawa coupling read

�m2
H |stop = � 3

8⇡2
y2
t

⇣
m2

U3
+ m2

Q3
+ |At|2

⌘
log

✓
⇤

TeV

◆
(4) eq:der1

at one loop in the leading logarithmic approximation, that is su�cient for the current dis-

cussion
?
[? ]. Here ⇤ denotes the scale at which SUSY breaking e↵ects are mediated to the

Supersymmetric SM. Since the soft parameters m2
U3,Q3

, At control the stop spectrum, as it

5

is well known, the requirement of a natural Higgs potential sets an upper bound on the stop

masses. In particular one has

q
m2

t̃1
+ m2

t̃2
<⇠ 600 GeV

sin �

(1 + x2
t )1/2

 
log (⇤/ TeV)

3

!�1/2 ✓
mh

120 GeV

◆ 
��1

20%

!�1/2

(5)

where we defined xt = At/
q

m2
t̃1

+ m2
t̃2
. Eq.

eq:ft-stopeq:ft-stop
?? poses a bound on the heaviest stop mass.

Moreover, for a fixed Higgs boson mass, a hierarchical stop spectrum induced by a large o↵-

diagonal term At tend to worsen the fine-tuning due to the direct presence of At in the r.h.s.

of eq.
eq:stop-1loopeq:stop-1loop
??. All the other radiative contributions to the Higgs potential from the other SM

particles pose much weaker bounds on the supersymmetric spectrum. The only exception is

the gluino that induces a large mass correction to the top squarks at 1-loop and feeds at two

loops in the Higgs potential. One finds, in the LL approximation

�m2
H |gluino = � 2

⇡2
y2
t

✓
↵s

⇡

◆
|M3|2 log2

✓
⇤

TeV

◆
(6)

where M3 is the gluino mass and we have neglected the mixed AtM3 contributions that can

be relevant for large A-terms. From the previous equation the gluino mass is bounded from

above by naturalness to be

M3
<⇠ 890 GeV sin �

 
log (⇤/ TeV)

3

!�1 ✓
mh

120 GeV

◆ 
��1

20%

!�1/2

(7)

In case of Dirac gauginos there is only one power of the logarithm1 in eq.
eq:gluinoeq:gluino
??, leading to a

bound get ameliorated by a factor of (log (⇤/ TeV))1/2, i.e., roughly 1.4 TeV for the choice

of parameters above.

For completeness, we give also the upper bounds on the other gauginos:

(M1, M2) <⇠ (2.7 TeV, 870 GeV)

 
log (⇤/ TeV)

3

!�1/2 ✓
mh

120 GeV

◆ 
��1

20%

!�1/2

(8)

the bino is clearly much less constrained, while the wino is as constrained as the gluino

only for low scale mediation models. For the squarks and sleptons there is only a significant

bound from the D-term contribution, if Tr(Yim
2
i ) 6= 0, and it is in the 5 � 10 TeV range.

MP: maybe move this paragraph in the model implication section.

1 The other logarithm gets traded into a logarithm of the ratio of soft masses. We assume it to be O(1),

but in principle can be tuned to provide further suppression.
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Figure 7: A simplified MSSM scenario with only strong production of gluinos and first- and second-
generation squarks, with direct decays to jets and neutralinos. Exclusion limits are obtained by using the
signal region with the best expected sensitivity at each point. The blue dashed lines show the expected
limits at 95% CL, with the light (yellow) bands indicating the 1� experimental uncertainties. Observed
limits are indicated by medium (maroon) curves, where the solid contour represents the nominal limit,
and the dotted lines are obtained by varying the cross section by the theoretical scale and PDF uncertain-
ties. Previous results from ATLAS [17] are represented by the shaded (light blue) area. Results at 7 TeV
are valid for squark or gluino masses below 2000 GeV, the mass range studied for that analysis.

set to 0.96 times the mass of the gluino.
In the CMSSM/MSUGRA case, the limit on m1/2 is above 340 GeV at high m0 and reaches 710 GeV

for low values of m0. Equal mass light-flavor squarks and gluinos are excluded below 1500 GeV in
this scenario. The same limit of 1500 GeV for equal mass of light-flavor squarks and gluinos is found
for the simplified MSSM scenario shown in Fig. 7. In the simplified model cases of Fig. 8 (a) and (c),
when the lightest neutralino is massless the limit on the gluino mass (case (a)) is 1100 GeV, and that
on the light-flavor squark mass (case (c)) is 630 GeV. Mass limits for the direct production of light-
flavor squarks (case (c)) hardly improve with respect to the 7 TeV data analysis because of increased
background predictions and uncertainties at 8 TeV in the low me↵ and low jet multiplicity channels used
to provide exclusions for these models.

8 Summary

This note reports a search for new physics in final states containing high-pT jets, missing transverse
momentum and no electrons or muons, based on a 5.8 fb�1dataset recorded by the ATLAS experiment at
the LHC in 2012. Good agreement is seen between the numbers of events observed in the data and the
numbers of events expected from SM processes.

The results are interpreted both in terms of MSUGRA/CMSSM models with tan � = 10, A0 = 0 and
µ > 0, and in terms of simplified models with only light-flavor squarks, or gluinos, or both, together
with a neutralino LSP, with the other SUSY particles decoupled. In the MSUGRA/CMSSM models,
values of m1/2 < 350 GeV are excluded at the 95% confidence level for all values of m0, and m1/2 < 740
GeV for low m0. Equal mass squarks and gluinos are excluded below 1500 GeV in this scenario. When
the neutralino is massless, gluino masses below 1100 GeV are excluded at the 95% confidence level in
a simplified model with only gluinos and the lightest neutralino. For a simplified model involving the
strong production of squarks of the first two generations, with decays to a massless neutralino, squark
masses below 630 GeV are excluded.

12

> 1.4 TeV

gluino

sq
ua

rk
s

Limit on squarks

udcs-squarks



Naturalness requires 
split squarks

M

8 dof
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• two stops and one (left-handed) sbottom, both below 500 � 700 GeV.

• two higgsinos, i.e., one chargino and two neutralinos below 200 � 350 GeV. In the

absence of other chargino/neutralinos, their spectrum is quasi-degenerate.

• a not too heavy gluino, below 900 GeV � 1.5 TeV.

There are some model-dependent motivations for augmenting this minimal spectrum with

additional light states. For example, there could also be a light gravitino at the bottom of the

spectrum because a low mediation scale is motivated by reducing the size of the logarithm

in Eqs. 6 and 7. Or, there could be an extra light neutralino (such as a bino or singlino)

motivated by dark matter. The rest of the superparticles may all be decoupled.

The relevant task is to determine the lower bounds on the masses of third generation

squarks, the gluino, and higgsinos, coming from direct collider searches, such as the searches

that have been performed so far at the 7 TeV LHC. This will be the subject of the following

sections.

As we will summarize in the next section, the LHC presently sets the strongest bounds

on the production of gluinos and the squarks of the first two generations. Therefore it is

worth discussing scenarios where the spectrum of the third generation squarks is lighter

than that of the first two generations [28, 38]. Scenarios of this type have less tension with

naturalness only if the squark masses are introduced in a flavor non-universal way at the

scale where SUSY breaking is mediated to the SSM sector. In fact, squark mass splittings

induced by renormalization group evolution originate from the same top Yukawa interactions

that correct the Higgs potential. Therefore, in flavor-blind SUSY mediation models, large

splittings between squarks in the IR actually increases the fine-tuning in the Higgs potential.

In particular, at one loop one has,

�m2
H ' 3

⇣
m2

Q3
� m2

Q1,2

⌘
' 3

2

⇣
m2

U3
� m2

U1,2

⌘
, (11)

where the squark mass splittings pose a lower bound on the amount of fine-tuning. The

implications of the LHC results on this class of models will be further discussed in Section V.

general, the phenomenology of SUSY searches. However the modifications caused by an extended Higgs

sector are most important for searches looking at direct electroweak-ino production, which is beyond the

LHC capabilities with 1fb�1. We therefore neglect this issue in the rest of the paper.
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• E.g. CPV in K-K mixing, severe constraints:

                               → 

• Generic 1-2 squark mass splittings small

1

⇤2
(s̄RdL)(sLdR) ⇤ > 3.2⇥ 105 TeV

V. SUPERSYMMETRY

Supersymmetric models provide, in general, new sources of flavor violation, for both the quark

and the lepton sectors. The main new sources are the supersymmetry breaking soft mass terms

for squarks and sleptons, and the trilinear couplings of a Higgs field with a squark-antisquark, or

slepton-antislepton pairs. Let us focus on the squark sector. The new sources of flavor violation are

most commonly analyzed in the basis in which the corresponding (down or up) quark mass matrix

and the neutral gaugino vertices are diagonal. In this basis, the squark masses are not necessarily

flavor-diagonal, and have the form

q̃∗Mi(M
2
q̃ )

MN
ij q̃Nj = (q̃∗Li q̃

∗
Rk)



 (M2
q̃ )Lij Aq

ilvq

Aq
jkvq (M2

q̃ )Rkl







 q̃Lj

q̃Rl



 , (5.1)

where M,N = L,R label chirality, and i, j, k, l = 1, 2, 3 are generation indices. (M2
q̃ )L and (M2

q̃ )R

are the supersymmetry-breaking squark masses-squared. The Aq parameters enter in the trilinear

scalar couplings Aq
ijφq q̃Liq̃

∗
Rj, where φq (q = u, d) is the q-type Higgs boson and vq = 〈φq〉.

In this basis, flavor violation takes place through one or more squark mass insertion. Each mass

insertion brings with it a factor of (δqij)MN ≡ (M2
q̃ )

MN
ij /m̃2

q , where m̃2
q is a representative q-squark

mass scale. Physical processes therefore constrain

[(δqij)MN ]eff ∼ max[(δqij)MN , (δqik)MP (δ
q
kj)PN , . . . , (i↔ j)]. (5.2)

For example,

[(δd12)LR]eff ∼ max[Ad
12vd/m̃

2
d, (M

2
d̃
)L1kA

d
k2vd/m̃

4
d, A

d
1kvd(M

2
d̃
)Rk2/m̃

4
d, . . . , (1↔ 2)]. (5.3)

Note that the contributions with two or more insertions may be less suppressed than those with

only one.

In terms of mass basis parameters, the (δqij)MM ’s stand for a combination of mass splittings

and mixing angles:

(δqij)MM =
1

m̃2
q

∑

α

(Kq
M )iα(K

q
M )∗jα∆m̃2

qα , (5.4)

where Kq
M is the mixing matrix in the coupling of the gluino (and similarly for the bino and neutral

wino) to qLi−q̃Mα; m̃2
q =

1
3

∑3
α=1 m̃

2
qMα

is the average squark mass-squared, and∆m̃2
qα = m̃2

qα−m̃
2
q.

Things simplify considerably when the two following conditions are satisfied [42], which means that

a two generation effective framework can be used (for simplicity, we omit here the chirality index):
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• Generic 1-2 squark mass splittings small

1

⇤2
(s̄RdL)(sLdR) ⇤ > 3.2⇥ 105 TeV

V. SUPERSYMMETRY

Supersymmetric models provide, in general, new sources of flavor violation, for both the quark

and the lepton sectors. The main new sources are the supersymmetry breaking soft mass terms

for squarks and sleptons, and the trilinear couplings of a Higgs field with a squark-antisquark, or

slepton-antislepton pairs. Let us focus on the squark sector. The new sources of flavor violation are

most commonly analyzed in the basis in which the corresponding (down or up) quark mass matrix

and the neutral gaugino vertices are diagonal. In this basis, the squark masses are not necessarily

flavor-diagonal, and have the form

q̃∗Mi(M
2
q̃ )

MN
ij q̃Nj = (q̃∗Li q̃

∗
Rk)



 (M2
q̃ )Lij Aq

ilvq

Aq
jkvq (M2

q̃ )Rkl







 q̃Lj

q̃Rl



 , (5.1)

where M,N = L,R label chirality, and i, j, k, l = 1, 2, 3 are generation indices. (M2
q̃ )L and (M2

q̃ )R

are the supersymmetry-breaking squark masses-squared. The Aq parameters enter in the trilinear

scalar couplings Aq
ijφq q̃Liq̃

∗
Rj, where φq (q = u, d) is the q-type Higgs boson and vq = 〈φq〉.

In this basis, flavor violation takes place through one or more squark mass insertion. Each mass

insertion brings with it a factor of (δqij)MN ≡ (M2
q̃ )

MN
ij /m̃2

q , where m̃2
q is a representative q-squark

mass scale. Physical processes therefore constrain

[(δqij)MN ]eff ∼ max[(δqij)MN , (δqik)MP (δ
q
kj)PN , . . . , (i↔ j)]. (5.2)

For example,

[(δd12)LR]eff ∼ max[Ad
12vd/m̃

2
d, (M

2
d̃
)L1kA

d
k2vd/m̃

4
d, A

d
1kvd(M

2
d̃
)Rk2/m̃

4
d, . . . , (1↔ 2)]. (5.3)

Note that the contributions with two or more insertions may be less suppressed than those with

only one.

In terms of mass basis parameters, the (δqij)MM ’s stand for a combination of mass splittings

and mixing angles:

(δqij)MM =
1

m̃2
q

∑

α

(Kq
M )iα(K

q
M )∗jα∆m̃2

qα , (5.4)

where Kq
M is the mixing matrix in the coupling of the gluino (and similarly for the bino and neutral

wino) to qLi−q̃Mα; m̃2
q =

1
3

∑3
α=1 m̃

2
qMα

is the average squark mass-squared, and∆m̃2
qα = m̃2

qα−m̃
2
q.

Things simplify considerably when the two following conditions are satisfied [42], which means that

a two generation effective framework can be used (for simplicity, we omit here the chirality index):
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Things simplify considerably when the two following conditions are satisfied [42], which means that

a two generation effective framework can be used (for simplicity, we omit here the chirality index):
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Things simplify considerably when the two following conditions are satisfied [42], which means that

a two generation effective framework can be used (for simplicity, we omit here the chirality index):
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mixing matrices mass splitting

q ij (δqij)MM 〈δqij〉

d 12 0.03 0.002

d 13 0.2 0.07

d 23 0.6 0.2

u 12 0.1 0.008

TABLE IV: The phenomenological upper bounds on (δqij)MM and on 〈δqij〉, where q = u, d and M = L,R.

The constraints are given for mq̃ = 1 TeV and x ≡ m2
g̃/m

2
q̃ = 1. We assume that the phases could suppress

the imaginary parts by a factor ∼ 0.3. The bound on (δd23)RR is about 3 times weaker than that on (δd23)LL

(given in table). The constraints on (δd12,13)MM , (δu12)MM and (δd23)MM are based on, respectively, Refs.

[44], [45] and [46].

q ij (δqij)LR

d 12 2× 10−4

d 13 0.08

d 23 0.01

d 11 4.7× 10−6

u 11 9.3× 10−6

u 12 0.02

TABLE V: The phenomenological upper bounds on chirality-mixing (δqij)LR, where q = u, d. The constraints

are given for mq̃ = 1 TeV and x ≡ m2
g̃/m

2
q̃ = 1. The constraints on δd12,13, δ

u
12, δ

d
23 and δqii are based on,

respectively, Refs. [44], [45], [46] and [49] (with the relation between the neutron and quark EDMs as in

[50]).

for MN = LR is 10 times weaker. Very strong constraints apply for the phase of (δq11)LR from

EDMs. For x = 4 and a phase smaller than 0.1, the EDM constraints on (δu,d,!11 )LR are weakened

by a factor ∼ 6.

While, in general, the low energy flavor measurements constrain only the combinations of the

suppression factors from degeneracy and from alignment, such as Eq. (5.6), an interesting exception

occurs when combining the measurements of K0–K0 and D0–D0 mixing to test the first two

generation squark doublets. Here, for masses below the TeV scale, some level of degeneracy is

unavoidable [16]:

mQ̃2
−mQ̃1

mQ̃2
+mQ̃1

≤






0.034 maximal phases

0.27 vanishing phases
(5.9)

20

 (m=1TeV)
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EDMs. For x = 4 and a phase smaller than 0.1, the EDM constraints on (δu,d,!11 )LR are weakened

by a factor ∼ 6.

While, in general, the low energy flavor measurements constrain only the combinations of the

suppression factors from degeneracy and from alignment, such as Eq. (5.6), an interesting exception

occurs when combining the measurements of K0–K0 and D0–D0 mixing to test the first two

generation squark doublets. Here, for masses below the TeV scale, some level of degeneracy is

unavoidable [16]:
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What if first 2 generation squark not degenerate?
Mahbubani, Papucci, GP, Ruderman & Weiler (12). 
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(ũ, d̃)L, (c̃, s̃)L

M

8 dof
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(ũ, d̃)L, ũR, d̃R,
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(ũ, d̃)L, (c̃, s̃)L

M

8 dof
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(c̃, s̃)L, c̃R, s̃R

Everything degenerate         

M
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ũR, c̃R

d̃R, s̃R

Split, but MFV !
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(ũ, d̃)L, (c̃, s̃)L

 Everything degenerate                       Split, but MFV                                                  Anarchy!
Producing Top Quarks 

6 

Tevatron  

Fermilab 
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CDF 
D0 

Main Injector 

PIC 2009 – Kobe, Japan Bernd Stelzer, Simon Fraser University 

- The Energy Frontier -!

LHC 

CERN 

•! 1.96 TeV pp collider 

•! Run II started in 2001 

•! Record Inst. Lum. 3.6!1032 [cm-2sec-1] 

Most of the results 

•! 14 TeV pp collider 

•! Restart in Nov 2009 at 7 TeV 

•! Inst. Lum. 1032-1034 [cm-2sec-1] 

ATLAS 

CMS 

Brief outlook 

??

??

4

Degenerate Minimal Flavor Anarchy!

mSugra, CMSSM, 
pMSSM, … 



Cross-sections roughly scale like ~1/m^6.

Example: 8 light squarks → 2 light squarks
 

  Shift limit only by   

→ too naive!

Collider estimate

⇠ 41/6 � 1 ⇡ 25%



Dedicated study 
needed

• Production cross-section can be flavor 
dependent through p.d.f ’s (u vs. d, sea vs. 
valence)

• Experimental efficiencies have thresholds 
and current limits are on the thresholds



Light flavor squark searches

Effect of the efficiency threshold:

M. Papucci, J. Ruderman 
G. Perez, R. Mahbubani, AW, PRL
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Figure 1: Feynman diagrams for the production of squarks and gluinos in lowest order.
The diagrams without and with crossed final-state lines [e.g. in (b)] represent t- and u-
channel diagrams, respectively. The diagrams in (c) and the last diagram in (d) are a
result of the Majorana nature of gluinos. Note that some of the above diagrams contribute
only for specific flavours and chiralities of the squarks.
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1 Analytical expressions in SUSY Alignment Models

The relevant e↵ective Hamiltonian in models with complete alignment is

He↵ = C1 (ui�µPL ci) (uj�µPL cj) , xD ' 2.6⇥ 1010 Re C1, (1)

where PR,L = (1 ± �5)/2 and i, j are colour indices and 0.23 ⇥ 10�2 < xD < 1.01 ⇥ 10�2.
Working within a two-generation framework, which is an excellent approximation, one can find
the following analytical result
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Figure 1: Left: Comparison of the numerical vs. analytical calculations of �MD where the an-
alytical calculation is based on eq. 2. Right: Comparison of the numerical vs. MIA calculations.
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Strong EWSB
(Composite Higgs)

e.g. SO(5)/SO(4) ⇠ = v2/f2



Why is the Higgs light?

Higgs is a pNGB

Minimal example
      SO(5) → SO(4) ~ SU(2)L x SU(2)R

27

The Higgs as a composite pseudo-NG boson

strong
sector

Aµ 

ψ

h

G → G’ The Higgs doublet H is the NG boson associated 
to the global symmetry G → G’ of a new strong 
dynamics

[ Georgi & Kaplan, `80 ]

� = exp
�
i�i⇥i(x)/v

�
exp

�
2i T â�â

(x)/f
�

T â 2 Alg(G/G0)

Minimal example (with custodial symmetry):

Agashe, RC, Pomarol,  NPB 719 (2005) 165 

R.C.,  DaRold, Pomarol, PRD 75 (2007) 055014; Carena, 
Ponton, Santiago,  Wagner, PRD 76 (2007) 035006; 
Hosotani, Oda, Ohnuma, Sakamura, PRD 78 (2008) 
096002;     Hosotani, Tanaka, Uekusa, PRD 82 (2010) 
115024; Redi, Gripaios,  JHEP 1008:116 (2010); 
Hosotani, Noda, Uekusa,  Prog. Theor. Phys 123 (2010) 
123; Panico, Safari, Serone,  JHEP 1102:103 (2011)

SO(5) → SO(4) ~ SU(2)L x SU(2)R four real NG bosons:

4 of SO(4) = real (2,2) of SU(2)L x SU(2)R

= complex 2 of SU(2)L

At high energies SO(4) is linearly realized

m2
h

⇠ �2

16⇥2
�2

comp

�⌧ 4⇡

25

The puzzle of Higgs lightness (aka the Hierarchy Problem)

If the Higgs boson is elementary, why it is so 
much lighter than the cutoff scale ?

Q:

A #3:   Higgs as a composite NG boson  (combines #1 and #2)

Loops of pure composites 
vanish due to NG symmetry

= 0

NG symmetry broken by 
elementary-composite couplings: 

No pure composite effects, 
vanish due to NG symmetry

NG symmetry broken by 
elementary-composite couplings:

Kaplan;  Agashe et. al



=

0

BBBB@
sin(� + h(x)/f) ei�i(x)Ai/v

0

BB@

0

0

0

1

1

CCA

cos(� + h(x)/f)

1

CCCCA

28

L =
f2

2
(Dµ�)T (Dµ�)

�T � = 1

⇥ = ei�âT â/f
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3 NG bosons eaten 
to form W,Z 
longitudinal

‘radial’ excitation h(x) 
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SO(4) invariantTree level: gauge SO(4) aligned

@ 1-loop <pi> = θ * f

Higgs

eaten by WL, ZL

SILH:  Giudice, Grojean, Pomarol, Rattazi
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FIG. 1: In green, yellow and gray, the 68%,95%,99% C.L.
contours for the parameters a and c with the most recent data
(table I). Upper plot: ATLAS with data taken at mh = 126.5
GeV (dashed contours correspond to data taken at mh =

125GeV). Lower plot:CMS with data taken at mh = 125GeV.
A flat prior a 2 [0, 3], c 2 [�3, 3] is used.

Pseudo Nambu-Goldstone boson (PNGB) nature of
the Higgs, the couplings between h and the W,Z
gauge bosons are modified as

a =
p
1� ⇠, (6)

where ⇠ ⌘ v2/f2, f being the analogue of the pion
decay constant and v = 246 GeV is the vacuum ex-
pectation value (VEV) of the Higgs field. Interest-
ingly, on the one hand ⇠ ⌧ 1 from constraints com-
ing from electroweak precision data (EWPD); on the
other hand ⇠ is a measure of fine-tuning in these mod-

els2 and is expected to be sizable.

III. SO(5)/SO(4) AND DIFFERENT
FERMION COUPLINGS

While the strong sector alone is SO(5) symmet-
ric, the couplings of elementary fermions to the
strong sector break this symmetry, since the SM
fermions do not fill complete SO(5) multiplets. We
can parametrize these couplings as spurions which
transform both under the SM-gauge group and un-
der some representation r of SO(5) (the well known
minimal models MCHM4 [3] and MCHM5 [4] corre-
spond to r = 4 and r = 5, respectively). Depending
on the size of r, the coupling of h to fermions f might
deviate from the SM as [5]:

cf =
1 + 2m� (1 + 2m+ n)⇠p

1� ⇠
, (7)

where m,n are positive integers which depend on
r. The specific cases with m = n = 0 or m = 0,
n = 1 correspond to the MCHM4 (with c =

p
1� ⇠)

and MCHM5 (with c = (1 � 2⇠)/
p
1� ⇠), where all

fermions share the same coupling structure. Models
with m 6= 0 have deviations w.r.t. the SM of order
unity (in the direction c > 1), even in the limit ⇠ ! 0
and we shall not consider them any further.

In the specific case with c ⌘ ct = cb = c⌧ , the ef-
fects of Eq. (6) and Eq. (7) can be well described in
the (a, c) plane. We compare this theoretical expec-
tation, for m = 0 and n = 0, ..., 5, with the best fit
from the combined results of ATLAS (at mh = 126.5
GeV) and CMS (mh = 125 GeV), for the parameters
(a, c) in fig. 2 (the dashed contours show the same fit
taking the ATLAS data at mh = 125 GeV). We as-
sume that no states, beside the SM ones, contribute
via loop-e↵ects to the hgg and h�� vertices.

Interestingly, representations leading to large n &
4 can fit well the data also in the region with c < 0,
where the rate h ! �� is enhanced, due to a posi-
tive interference between W and t loops in the h��
vertex (the fact that it is possible to have order 1
changes in this coupling, from modification of or-
der O(v2/f2) ⌧ 1 is due to the large n & 4 en-
hancement). To our knowledge, explicit models of

2 The loop-induced potential for the PNGBs is a function of
sin v/f and, without any fine-tuned cancellation, would nat-
urally induce v ⇡ f or v = 0.

cf =
1� (1 + n)⇠

1� ⇠ ⇠ =

✓
v

f

◆2
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FIG. 2: Global fit for the parameters a and c, obtained com-
bining CMS and Tevatron for mh = 125 GeV and ATLAS for
mh = 126.5 (dashed circles use ATLAS at mh = 125 GeV);
colors and priors as in fig. 1. The lines denote predictions
of a generic MCHM; di↵erent curves correspond to di↵erent
values of n = 0, ..., 5 in Eq. (7) (m = 0), going downwards
(n = 0, 1 correspond to the MCHM4 and MCHM5). The red
part of the curves is for 0 < ⇠ < 0.25 and the blue dashed for
0.25 < ⇠ < 1.

this type do not exist yet in the literature (n = 4
would appear in models where the spurions connect-
ing SM fields and the strong sector transform as an
irreducible representation r 2 5⌦ 5⌦ 5⌦ 5 of SO(5))
and it would be interesting to see if realistic models
can be built.

As a final example, we consider the possibility of
coupling top and down-type (b and ⌧) fermions in dif-
ferent ways to the strong sector (models of this type
have been proposed, for instance, in refs.[7, 20]). We
show examples of this as dots in the ct, |cb| plane in
fig. 6 with ct =

p
1� ⇠ and cb = c⌧ = (1�2⇠)/

p
1� ⇠

(black dot) and with ct = (1 � 2⇠)/
p
1� ⇠ and

cb = c⌧ =
p
1� ⇠ (gray dot). Fig. 6 shows slices

of constant a: for this reason these models, which
map into a curve in the 3D (a, cb, ct)-space, appear
as dots in the figure. The asymmetric couplings do
not improve the fit to the data, which shows a pref-
erence for the region cb ⇡ ct.

IV. SO(6)/SO(5) AND THE ROLE OF THE
EXTRA SINGLET

The light spectrum of models based on the
SO(6)/SO(5) coset structure contains, beside the

Higgs doublet, an extra CP-odd scalar ⌘ [6]. In
the absence of extra symmetries, the scalar poten-
tial is generic and the Higgs scalar mixes with the
singlet: this is the most important conceptual dif-
ference w.r.t. the SO(5)/SO(4) models as far as h-
phenomenology is concerned. The mass-eigenstate
basis reads

 
⌘0

h0

!
=

 
cos↵ sin↵

� sin↵ cos↵

! 
⌘

h

!
, (8)

where we take the mixing angle ↵ a free parameter.
The couplings of ⌘ (being a gauge singlet) to the
SM fermions and gauge bosons arise only at the non-
renormalizable level and are suppressed by powers
of v/f . As a consequence, mixing implies that all
the couplings of the physical Higgs will be generally
suppressed by cos↵.

Now, it is important to notice that in composite
Higgs models no enhancement is generally expected
for h ! �� [21](see however refs. [22, 23] where ex-
ceptions are discussed). The reason is that e↵ective
operators, mediated by heavy states, of the form

cB
H†H

f2
Bµ⌫B

µ⌫ , cW
H†H

f2
Wµ⌫W

µ⌫ , (9)

are generically supposed to be small by NDA argu-
ments [19]: they break the shift symmetry of the
PNGB Higgs and their coe�cient should be sup-
pressed by powers of a weak coupling over strong
coupling. The coset SO(6)/SO(5), however, admits
a Wess-Zumino-Witten (WZW) term in its e↵ective
Lagrangian, corresponding to a quantum anomaly of
the UV theory. At leading order in 1/f (and without
including the e↵ect of possible couplings of ⌘ to the
SM fermions) this includes

L ⇢ ⌘

32⇡2f
(nBBµ⌫B̃

µ⌫ + nWWµ⌫
a W̃ a

µ⌫). (10)

Therefore, in the SO(6)/SO(5) models, while all
cross-section times branching ratios are reduced by
cos2 ↵, the WZW term induces a coupling between
⌘ and photons and can enhance the BR for photons
(only3):

�h�� ! �h��(cos
2 ↵+ sin2 ↵

�⌘��

�h��
), (11)

3 We ignore the contribution of Eq. (10) to the hV V vertex
(V = W,Z), contribution which will always be smaller then
the renormalizable one.

Montull/Riva
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FIG. 1: In green, yellow and gray, the 68%,95%,99% C.L.
contours for the parameters a and c with the most recent data
(table I). Upper plot: ATLAS with data taken at mh = 126.5
GeV (dashed contours correspond to data taken at mh =

125GeV). Lower plot:CMS with data taken at mh = 125GeV.
A flat prior a 2 [0, 3], c 2 [�3, 3] is used.

Pseudo Nambu-Goldstone boson (PNGB) nature of
the Higgs, the couplings between h and the W,Z
gauge bosons are modified as

a =
p
1� ⇠, (6)

where ⇠ ⌘ v2/f2, f being the analogue of the pion
decay constant and v = 246 GeV is the vacuum ex-
pectation value (VEV) of the Higgs field. Interest-
ingly, on the one hand ⇠ ⌧ 1 from constraints com-
ing from electroweak precision data (EWPD); on the
other hand ⇠ is a measure of fine-tuning in these mod-

els2 and is expected to be sizable.

III. SO(5)/SO(4) AND DIFFERENT
FERMION COUPLINGS

While the strong sector alone is SO(5) symmet-
ric, the couplings of elementary fermions to the
strong sector break this symmetry, since the SM
fermions do not fill complete SO(5) multiplets. We
can parametrize these couplings as spurions which
transform both under the SM-gauge group and un-
der some representation r of SO(5) (the well known
minimal models MCHM4 [3] and MCHM5 [4] corre-
spond to r = 4 and r = 5, respectively). Depending
on the size of r, the coupling of h to fermions f might
deviate from the SM as [5]:

cf =
1 + 2m� (1 + 2m+ n)⇠p

1� ⇠
, (7)

where m,n are positive integers which depend on
r. The specific cases with m = n = 0 or m = 0,
n = 1 correspond to the MCHM4 (with c =

p
1� ⇠)

and MCHM5 (with c = (1 � 2⇠)/
p
1� ⇠), where all

fermions share the same coupling structure. Models
with m 6= 0 have deviations w.r.t. the SM of order
unity (in the direction c > 1), even in the limit ⇠ ! 0
and we shall not consider them any further.

In the specific case with c ⌘ ct = cb = c⌧ , the ef-
fects of Eq. (6) and Eq. (7) can be well described in
the (a, c) plane. We compare this theoretical expec-
tation, for m = 0 and n = 0, ..., 5, with the best fit
from the combined results of ATLAS (at mh = 126.5
GeV) and CMS (mh = 125 GeV), for the parameters
(a, c) in fig. 2 (the dashed contours show the same fit
taking the ATLAS data at mh = 125 GeV). We as-
sume that no states, beside the SM ones, contribute
via loop-e↵ects to the hgg and h�� vertices.

Interestingly, representations leading to large n &
4 can fit well the data also in the region with c < 0,
where the rate h ! �� is enhanced, due to a posi-
tive interference between W and t loops in the h��
vertex (the fact that it is possible to have order 1
changes in this coupling, from modification of or-
der O(v2/f2) ⌧ 1 is due to the large n & 4 en-
hancement). To our knowledge, explicit models of

2 The loop-induced potential for the PNGBs is a function of
sin v/f and, without any fine-tuned cancellation, would nat-
urally induce v ⇡ f or v = 0.

cf =
1� (1 + n)⇠

1� ⇠
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Partial compositeness not the full story
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Dijet bump search
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Light Higgs MFV connection
Redi et al
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Figure 2: Masses of fermionic partners as a function of the Higgs mass for f = 800 GeV in CHM5 with
MFV. Same parameters as in Fig. 1 are chosen.

10 decomposes as a (2,2)� (3,1)� (1,3). Each chiral SM fermion couples to a di↵erent 102/3
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. The third generation quark lagrangian reads,
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(9)

where  
T,T̃

is a 5 ⇥ 5 matrix corresponding to the adjoint rep of SO(5). The lagrangian has
structure analogous to eq. (4), the presence of traces being needed to construct SO(5) invariants.
Di↵erently from CHM5 the SM doublet needs to couple to a single composite fermion to generate
the Yukawas of up and down sector. As in CHM5 the latter is not important for the potential
and we will neglect it.

We performed a scan of the potential similarly to CHM5 with f = 800 GeV. The main
di↵erence is due to the fact that,

mCHM10
q

⇠ 1p
2
mCHM5

q

(10)

6

f=800, grho =3

Recalculated Higgs
potential for RH -
compositeness
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chromo-magnetic (loop)

three-body

Both decay modes suppressed 
and result in a narrow width

deVries, Redi, Sanz, AW, in prep.



only give the limiting behavior (with all light quark masses set to zero mq = mq0 = 0)
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(4.2)

The full analytic expression including the width of the heavy color octet has been used for the analyses.

This decay su↵ers from the octet being o↵-shell and phase space suppression. Finally a decay to SM

quarks plus a longitudinal W, Z or Higgs [8] is possible
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Figure 8: Comparison between MadGraph (solid) and theory (dashed) prediction of the fermion

widths: chromomagnetic decay (top), three body decay (bottom).

In the MFV scenario the electroweak two body decay is entirely negligible for the first generation
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Figure 6: On the left total cross-section of associate production of the heavy quarks of the first

generation at LHC7 obtained with Madgraph [23] for g⇢ = 3, sin'uR = sin'dR = 0.8. On the right

double production through QCD and heavy gluon exchange.

Figure 7: Fermion decay channels: two body decay via the chromomagnetic operators, three body

decay via an o↵-shell color octet and electroweak two body decay.

operator induces a decay to a gluon and a quark and generates a width

�
chromo

(Q ! qg) =
4

3
↵s

2s2Ru

1

m5

Q

��m2

Q � m2

q

��3 , (4.1)

and the same for the down type quarks with sRu ! sRd. This decay is induced by a one loop

contribution and is typically very small and in this case the three body decay mediated by an o↵-shell

⇢ may be larger. An analytical expression for the three body decay is quite lengthy and therefore we

9

Figure 14: One loop contributions to the chromomagnetic operator in partial composite models.

A Chromomagnetic Operator

In this appendix a short review of the chromomagnetic operator will be given. This operator is

relevant for phenomenology, cause regular two body decays of the heavy quarks are suppressed and

loop mediated decays will play a role. These loop e↵ects may be encoded in an e↵ective operator,

which is the chromomagnetic operator

L
chromo

=
gs

mQ
Q̄L�µ⌫T

aqRGa
µ⌫ . (A.1)

This operator receives both calculable contributions from ⇢’s and Q’s in the loop (give in figure 14)

as well as incalculable contributions from the strong sector. If these contirbutions are loop generated

a naive dimensional estimate would give

 =
g2⇢

16⇡2

. (A.2)

A textbook computation of the diagrams for the calculable contribution gives

 =
g2⇢
8⇡2

Z
1

0

dz
2m2

Q z(1� z)2

m2

Q(1� z)2 + z m2

⇢

⇡
mQ⌧m⇢

g2⇢
12⇡2

m2

Q

m2

⇢

(A.3)

which is suppressed if the fermion is lighter than the vector resonances. There is also a contribution

from the diagram with SM gluons. In this case the coupling is given by equation (A.2). This can

dominate in the region mQ ⌧ m⇢. [TODO: Check these results: color factors, diagrams]
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Strong Signatures

Production Modes

Four jet analysis by CMS 7 TeV 2.2 fb�1

[CMS PAS EXO-11-016]

However, optimized for pair production of
two heavy resonances

Hence, needs a dedicated search for this
topology

Six jet analysis by CMS 7 TeV 5.0 fb�1

[CMS-EXO-11-060]

Looks at the invariant mass of three jets to
find resonances, but six jets are hard to
analyze

Our paper will contain more detailed
analyses and suggestions for dedicated
experimental searches
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Dedicated search

mQ = 1 TeV

mrho = 1.5 TeV
At high mQ, the striking feature of this channel is a rather energetic leading jet, which most oftenly

is the spectator quark. Whereas the other three jets form the invariant mass of the on-shell heavy

quark partner. We base our search strategy on this observation and the double dijet search by CMS

discussed before and propose the following selection criteria.

• Require four jets with |⌘| < 2.5 and pT > 150 GeV.

• The leading jet must have a pT larger than 500 GeV.

• The other three jets must combine into an invariant mass of more than 1500 GeV.

The e↵ect of these criteria on both the single production e�ciency and QCD background is studied

using MadGraph5 to generate the signal and QCD events with four parton jets.

[TODO: add back the table of the QCD bg, add details on genetion ALPGEN and so on]

At low mQ, the cut on the pT of the leading jet has to be loosened, as the signal e�ciency drops

very fast with mQ. In this region, we propose a di↵erent strategy. After a basic cut of at least four-jets

with pT > 70 GeV, we plot HT =
P

4

i=1

piT versus �
13

= p1T � p3T , the pT di↵erence between the first

and third jet. The distributions are shown in Fig. 11, for mQ= 500 GeV (left) and 1 TeV (right).

The signal is characterized by a larger HT and also by a larger hierarchy between the first and third

jet. The di↵erences between QCD and signal are less strong at low mQ, and a harder cut on both

variables should be done to keep QCD under control. Although the two variables are clearly correlated,

and modified ABCD method could be used here to estimate the amount of QCD (pink-scatter plot)

background leaking into the signal region. We produced the samples using MG5+pythia with MLM
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Figure 11: .

matching and smeared the jet energy-momentum using ATLFAST.
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Conclusions 

• Flavor can hide or enhance visibility at high 
pT 

• In the next years, naturalness on trial: 
reaching critical sensitivity for scalar/
fermion partners

• MFV composite Higgs is very visible, EWPT 
ok with large compositeness: expect 
discovery/exclusion with LHC14


