Flavor at high pr

Andreas Weiler (DESY)

The first three years of the LHC Schloss Waldthausen, Mainz, March 18–22, 2013

Importance of flavor at high p_T

Flavor can...

- Hide new physics: searches are optimized to the flavor trivial case
- Render new physics more visible, but not in the channels we are studying so far

Brando's talk

Jose Canseco @JoseCanseco higgs boson is lighter than i thought. Could it also have no limits in dimension or time. think about that

Expand

Jose Canseco @JoseCanseco higgs boson is an energy bridge not an enemy Expand

Jose Canseco @JoseCanseco we are already in the alternative universe I believe or it wont happen for billions of years. it is okay

Expand

Jose Canseco @JoseCanseco do not fear the higgs bosun Expand 7h

5h

6h

7h

Jose Canseco

Baseball Player

José Canseco Capas, Jr., is a Cuban-American former Major League Baseball outfielder, and designated hitter who is

currently playing for the Rio Grande Valley WhiteWings. Wikipedia

http://www.facebook.com/matt.reece

Jose Canseco @JoseCanseco higgs boson is lighter than i thought. Could it also have no limits in dimension or time. think about that

Expand

Jose Canseco @JoseCanseco higgs boson is an energy bridge not an enemy Expand

Jose Canseco @JoseCanseco we are already in the alternative universe I believe or it wont happen for billions of years. it is okay

Expand

Jose Canseco @JoseCanseco do not fear the higgs bosun Expand

7h

5h

6h

7h

Jose Canseco

Baseball Player

Jose Canseco Capas, Jr., is a Cuban-American former Major League Baseball outfielder, and designated hitter who is

WhiteWings. Wikipedia

Message to BSM

http://www.facebook.com/matt.reece

Supersymmetry

Colored susy > TeV ? colored sparticles

		ATLAS SUSY S	arches* - 95% CL l	wer Limits (Status: Dec 2012)
	MSUGBA/CMSSM 0 len + i's + F-	/ -5.8.fb ⁻¹ .8.TeV [ATLAS_CONE-2012-109]	150	
	MSUGRA/CMSSM : 1 lep + j's + $E_{T,miss}$	L=5.8 fb ⁻¹ , 8 TeV [ATLAS-CONF-2012-104]	1.24 Te	$\tilde{q} = \tilde{q}$ mass
(0	Pheno model : 0 lep + j's + $E_{T miss}$	L=5.8 fb ⁻¹ , 8 TeV [ATLAS-CONF-2012-109]	1.18 TeV	\widetilde{q} mass $(m(\widetilde{q}) < 2 \text{ TeV}, \text{ light } \widetilde{\chi}^0)$ ATLAS
hea	Pheno model : 0 lep + j's + $E_{T miss}$	L=5.8 fb ⁻¹ , 8 TeV [ATLAS-CONF-2012-109]	1.38 T	$\widetilde{q} \text{ mass } (m(\widetilde{g}) < 2 \text{ TeV}, \text{ light } \widetilde{\chi}^0_{,})$ Preliminary
arc	Gluino med. $\tilde{\chi}^{\pm}$ ($\tilde{g} \rightarrow q\bar{q}\tilde{\chi}^{\pm}$) : 1 lep + j's + $E_{T \text{ miss}}$	L=4.7 fb ⁻¹ , 7 TeV [1208.4688]	900 GeV ĝ	ASS $(m(\tilde{\chi}_1^0) < 200 \text{ GeV}, m(\tilde{\chi}^{\pm}) = \frac{1}{2}(m(\tilde{\chi}^0) + m(\tilde{g}))$
Se	GMSB (\tilde{I} NLSP) : 2 lep (OS) + j's + $E_{T miss}$	L=4.7 fb ⁻¹ , 7 TeV [1208.4688]	1.24 Te\	\tilde{g} mass' (tan β < 15)
ive	GMSB ($\tilde{\tau}$ NLSP) : 1-2 τ + 0-1 lep + j's + $E_{T,\text{miss}}^{T,\text{miss}}$	L=4.7 fb ⁻¹ , 7 TeV [1210.1314]	1.20 TeV	\tilde{g} mass (tan β > 20)
sni	GGM (bino NLSP) : $\gamma\gamma + E$	L=4.8 fb ⁻¹ , 7 TeV [1209.0753]	1.07 TeV	mass $(m(\tilde{\chi}_1) > 50 \text{ GeV})$ $Ldt = (2.1 - 13.0) \text{ fb}^{-1}$
lnc	GGM (WIND NLSP) : γ + IEP + E	L=4.8 fb ⁻¹ , 7 TeV [ATLAS-CONF-2012-144]	619 Gev g mass	J T
	GGW (Higgsino-bino NLSP) $\cdot \gamma + b + E$	L=4.8 fb ⁻¹ , 7 TeV [1211.1167]	900 GeV g	$\text{RSS}(m(\chi_1) > 220 \text{ GeV})$ (S = 7, 8 TeV
	GGM (NIggsino NLSP) : $Z + \text{Jets} + E_{T,\text{miss}}$	L=5.8 fb ⁻¹ , 8 TeV [ATLAS-CONF-2012-152]	690 GeV g mas	(m(H) > 200 GeV)
	Gravilino LSP . monojet $+E_{T,miss}$	L=10.5 fb ⁻ , 8 TeV [ATLAS-CONF-2012-147]	645 GeV F SC	$(m(G) > 10^{-9} C)$
sq	$g \rightarrow bb\gamma$ (Virtual b): 0 lep + 3 b-j's + $E_{T,miss}$	L=12.8 fD , 8 IEV [ATLAS-CONF-2012-145]	1.24 Tev	$g_{\text{mass}}(m(\chi_1) < 200 \text{ GeV})$
еп. Ст	$g \rightarrow it \chi$ (virtual i) $\cdot 2 \text{ lep } (55) + 15 + E_{T,\text{miss}}$	L=3.0 fb ⁻¹ 8 TeV [ATLAS-CONF-2012-105]	860 GeV G I	$SS_{(m(\chi))} < 300 \text{ GeV} $ 8 TeV results
l ge uinc	$\widetilde{q} \rightarrow t_{\infty}$ (virtual t): 0 lep + 15 + $L_{T,miss}$	$l = 5.8 \text{ fb}^{-1}$ 8 TeV [ATLAS-CONF-2012-103]	1 00 TeV	$\frac{100}{100} \left(\frac{m_{\chi_{1}}}{m_{\chi_{2}}} < 300 \text{ GeV} \right) = 7.75 \text{ M} \text{ max}$
3rc glu	$q \rightarrow t \overline{\chi}$ (virtual t) : 0 lep + find ti-j s + $E_{T,miss}$	$L=12.8 \text{ fb}^{-1}$. 8 TeV [ATLAS-CONF-2012-145]	1.15 TeV	$1 \text{ mass } (m(\chi_1) < 200 \text{ GeV})$
	$bh b \rightarrow b\tilde{\gamma}^{0}$ 0 lep + 2-b-jets + F_{-}	L=12.8 fb ⁻¹ , 8 TeV [ATLAS-CONF-2012-165]	620 GeV b mass	$n(\tilde{\chi}^0) < 120 \text{ GeV}$
'ks on	$\widetilde{bb}, \widetilde{b}, \rightarrow t\widetilde{\gamma}^{\pm}$: 3 lep + i's + E_{τ} miss	L=13.0 fb ⁻¹ , 8 TeV [ATLAS-CONF-2012-151]	405 GeV b mass $(m(\tilde{\chi}^{\pm}))$	$m(\tilde{\chi}))$
uai ucti	$\tilde{t}\tilde{t}$ (light), $\tilde{t} \rightarrow b\tilde{\chi}^{\pm 1}$: $1/2^{1}$ lep (+ b-jet) + $E_{T \text{ miss}}^{T,\text{miss}}$	L=4.7 fb ⁻¹ , 7 TeV [1208.4305, 1209.2102]67 GeV	MASS $(m(\tilde{\chi}_{4}^{0}) = 55 \text{ GeV})$	
bs	\widetilde{t} (medium), $\widetilde{t} \rightarrow b \widetilde{\chi}_{+}^{\pm}$: 1 lep + b-jet + $E_{T \text{ miss}}$	L=13.0 fb ⁻¹ , 8 TeV [ATLAS-CONF-2012-166]	-350 GeV \widetilde{t} mass $(m(\widetilde{\chi}_1^0) = 0$	eV, m(χ̃_1^±) = 150 GeV)
en.	tt (medium), t→b $\tilde{\chi}_{1}^{\pm}$: 2 lep + $E_{T,miss}$	L=13.0 fb ⁻¹ , 8 TeV [ATLAS-CONF-2012-167]	160-440 Gev t mass (m(x)	0 GeV, $m(\tilde{t}) - m(\tilde{\chi}_{1}^{\pm}) = 10$ GeV)
d g 'eci	$\widetilde{tt}, \widetilde{t} \rightarrow t \widetilde{\chi}_1^\circ$: 1 lep + b-jet + $E_{T, \text{miss}}$	L=13.0 fb ⁻¹ , 8 TeV [ATLAS-CONF-2012-166]	230-560 Gev t mass ($\zeta_{1}^{0} = 0$
3r dii	tt, t \rightarrow t χ° : 0/1/2 lep (+ b-jets) + $E_{T,\text{miss}}$	L=4.7 fb ⁻¹ , 7 TeV [1208.1447,1208.2590,1209.4186]	230-465 GeV t mass (m(x	= 0)
	tt (natural GiMSB) : $Z(\rightarrow II) + D$ -jet + E	L=2.1 fb ⁻¹ , 7 TeV [1204.6736]	<u>10 GeV</u> t mass $(115 < m(\tilde{\chi}_1^\circ))$	230 GeV)
st '	$\sim^+\sim^-\sim^+ \sim \lim_{z \to z} \lim_$	L=4.7 fb ⁻¹ , 7 TeV [1208.2884] 85-195 Ge	I mass $(m(\chi_1) = 0)$	~ ~ . 1. ~ ~ 0
≡W irec	$\chi_{\chi}, \chi \rightarrow lv(lv) \rightarrow lv\chi : 2 lep + E_{T,miss}$	L=4.7 fb ⁻ , 7 TeV [1208.2884]	-340 GeV χ_1 mass $(m(\chi_1) < 10^{\pm}$	$GeV, m(I,v) = \frac{1}{2}(m(\chi_{i}) + m(\chi_{i})))$
d b	$\chi_1 \chi_2 \rightarrow I_1 \vee I_1 I(\vee V), V _1 I(\vee V) : 3 \text{ lep } + E^{T,\text{miss}}$	L=13.0 fD , 8 IeV [AILAS-CONF-2012-154]	580 GeV χ_1 IIIass	$m(\chi_1) = m(\chi_2), m(\chi_1) = 0, m(l,v) \text{ as above}$
	$\chi \chi \rightarrow W \chi \chi \chi , 3 \text{ Iep } + E_{T,\text{miss}}$ Direct $\tilde{\chi}^{\pm}$ Direct $\tilde{\chi}^{\pm}$ pair prod (AMSB) : long-lived χ^{\pm}	L=13.0 ID , 8 IeV [A1LAS-CONF-2012-134] 140	$\widetilde{\chi}^{\pm}$ mass $(m(\chi_1) = m$	$(\chi_1) = 0$, sieptons decoupled)
ied Se	Stable $\tilde{\alpha}$ R-badrons : low $\beta_1 \beta_2$ (full detector)	$I = 4.7 \text{ fb}^{-1}$ 7 TeV [1210.2002] 220 (985 GeV	lass
j-liv ticl€	Stable \hat{f} B-badrons : low β , $\beta\gamma$ (full detector)	$L=4.7 \text{ fb}^{-1}$, 7 TeV [1211.1597]	683 GeV T mass	
ong	GMSB : stable $\tilde{\tau}$	L=4.7 fb ⁻¹ , 7 TeV [1211.1597]	0 GeV $\tilde{\tau}$ MASS (5 < tan β < 2	
P L	$\tilde{\gamma}^0 \rightarrow \text{ggu} (\text{RPV})$: μ + heavy displaced vertex	L=4.4 fb ⁻¹ , 7 TeV [1210.7451]	700 Gev q mas	$(0.3 \times 10^{-5} < \lambda'_{0.1} < 1.5 \times 10^{-5}, 1 \text{ mm} < c\tau < 1 \text{ m}, \tilde{g} \text{ decoupled})$
	LFV : pp $\rightarrow \tilde{v}_1 + X, \tilde{v}_2 \rightarrow e + \mu$ resonance	L=4.6 fb ⁻¹ , 7 TeV [Preliminary]	1.6	eV $\tilde{\nu}_{\tau}$ mass (λ'_{311} =0.10, λ_{132} =0.05)
	LFV : pp $\rightarrow \tilde{v}_{\tau} + X, \tilde{v}_{\tau} \rightarrow e(\mu) + \tau$ resonance	L=4.6 fb ⁻¹ , 7 TeV [Preliminary]	1.10 TeV	mass $(\lambda_{311}^{i}=0.10, \lambda_{1(2)33}=0.05)$
\sum_{α}	Bilinear RPV CMSSM : 1 lep + 7 j's + $E_{T,miss}$	L=4.7 fb ⁻¹ , 7 TeV [ATLAS-CONF-2012-140]	1.2 TeV	$\tilde{q} = \tilde{g} \text{ mass} (c\tau_{LSP} < 1 \text{ mm})$
Ы	$\widetilde{\chi}_{1}^{+}\widetilde{\chi}_{2}^{-}\widetilde{\chi}_{1}^{+} \rightarrow W\widetilde{\chi}_{0}^{0}, \widetilde{\chi}_{0}^{0} \rightarrow eev_{\mu}, e\mu v_{\mu} : 4 lep + E_{T.miss}$	L=13.0 fb ⁻¹ , 8 TeV [ATLAS-CONF-2012-153]	700 Gev χ ma	$(m(\tilde{\chi}_{1}^{0}) > 300 \text{ GeV}, \lambda_{121} \text{ or } \lambda_{122} > 0)$
	$ L_{L}, L_{J} \rightarrow [\widetilde{\chi}_{1}, \widetilde{\chi}_{1}] \rightarrow eev_{\mu}, e\mu v_{\lambda} : 4 lep + E_{T, miss}$	L=13.0 fb ⁻¹ , 8 TeV [ATLAS-CONF-2012-153]	430 Gev I mass $(m(\widetilde{\chi}_1^0))$	100 GeV, $m(l_e) = m(l_\mu) = m(l_\tau)$, λ_{121} or $\lambda_{122} > 0$)
	g̃ → qqq : 3-jet resonance pair	L=4.6 fb ⁻¹ , 7 TeV [1210.4813]	666 GeV g mass	
\ <u>\</u> /IN/	Scalar gluon : 2-jet resonance pair	L=4.6 fb ⁻¹ , 7 TeV [1210.4826] 100-	GeV Sgluon mass (incl. lir	rom 1110.2693)
V V I I V		L=10.5 fb ⁻ , 8 TeV [ATLAS-CONF-2012-147]	704 GeV IVI^ SC	$e^{-(m_{\chi} < 80 \text{ GeV, limit of } < 687 \text{ GeV for } 08)}$
		10 ⁻¹	1	10

TeV

Mass scale [TeV]

Fermi scale

*C Al

Colored susy > TeV ? colored sparticles

Natural Ascetic susy

rspectful istentewi ts, and he hass range of **r problen** led stop, the

om the point

for hissing

Figure 2: Expected and observed 95% C.L. exclusion limits in the $\tilde{q} \to t \bar{t} \tilde{\chi}_1^0$ (via off mass-shell \tilde{t} ,

Natural EWSB in times of austerity

Barbieri/Guidice

MSSM,NMSSM, ...

Fine-tuning of (Higgs mass)²

$$\frac{m_{Higgs}^2}{2} = -|\mu|^2 + \ldots + \delta m_H^2$$

Natural EWSB in times of austerity

Fine-tuning of (Higgs mass)²

$$\frac{m_{Higgs}^2}{2} = -|\mu|^2 + \ldots + \delta m_H^2$$
Higgsinos

MSSM, NMSSM, ...

Natural EWSB in times of austerity **Barbieri/Guidice** MSSM,NMSSM, ... Fine-tuning of (Higgs mass)² $\frac{m_{Higgs}^2}{2} = -|\mu|^2 + \ldots + \delta m_H^2$ Higgsinos $\delta m_H^2|_{stop} = -\frac{3}{8\pi^2} y_t^2 \left(m_{U_3}^2 + m_{Q_3}^2 + |A_t|^2 \right) \log\left(\frac{\Lambda}{\text{TeV}}\right)$ lloop stops, sbottom $\delta m_H^2|_{gluino} = -\frac{2}{\pi^2} y_t^2 \left(\frac{\alpha_s}{\pi}\right) |M_3|^2 \log^2\left(\frac{\Lambda}{\text{TeV}}\right)$ 2loop gluino

Direct stop searches

$(m_{\tilde{t}_1} - m_{LSP}) < 30 - 40 \,\text{GeV}$

Delgado, Isidori et al.

Limit on squarks

Naturalness requires split squarks				
M	$(\tilde{u}, \tilde{d})_L, \ \tilde{u}_R, \ \tilde{d}_R,$			
$egin{array}{ccc} & & & & & & & & & & & & & & & & & &$	$(c,s)_L, c_R, s_R$			

Splitting via RGE?

Papucci, Ruderman, AW '11

Splitting via renormalization group does not help

$$\delta m_H^2 \simeq 3 \left(m_{Q_3}^2 - m_{Q_{1,2}}^2 \right) \simeq \frac{3}{2} \left(m_{U_3}^2 - m_{U_{1,2}}^2 \right)$$

Higgs fine-tuning = RGE mass splitting

I-loop, LLog, tanß moderate

Splitting via RGE?

Papucci, Ruderman, AW '11

Splitting via renormalization group does not help

$$\delta m_H^2 \simeq 3 \left(m_{Q_3}^2 - m_{Q_{1,2}}^2 \right) \simeq \frac{3}{2} \left(m_{U_3}^2 - m_{U_{1,2}}^2 \right)$$

I-loop, LLog, tanß moderate

Higgs fine-tuning = RGE mass splitting

→ Flavor non-trivial susy breaking!

Flavor Bounds (K, D, B, Bs mixing, ...) controlled by

$$(\delta_{ij}^q)_{MM} = \frac{1}{\tilde{m}_q^2} \sum_{\alpha} (K_M^q)_{i\alpha} (K_M^q)_{j\alpha}^* \Delta \tilde{m}_{q\alpha}^2$$

Flavor Bounds (K, D, B, Bs mixing, ...) controlled by

$$(\delta_{ij}^q)_{MM} = \frac{1}{\tilde{m}_q^2} \sum_{\alpha} (K_M^q)_{i\alpha} (K_M^q)_{j\alpha}^* \Delta \tilde{m}_{q\alpha}^2$$

mixing matrices

Flavor Bounds (K, D, B, Bs mixing, ...) controlled by

$$(\delta_{ij}^q)_{MM} = \frac{1}{\tilde{m}_q^2} \sum_{\alpha} (K_M^q)_{i\alpha} (K_M^q)_{j\alpha}^* \Delta \tilde{m}_{q\alpha}^2$$

mixing matrices mass splitting

Flavor Bounds (K, D, B, Bs mixing, ...) controlled by

$$(\delta^q_{ij})_{MM} = \frac{1}{\tilde{m}_q^2} \sum_{\alpha} (K^q_M)_{i\alpha} (K^q_M)^*_{j\alpha} \Delta \tilde{m}^2_{q\alpha}$$

mixing matrices mass splitting

	(m=ITeV)			
q	ij	$(\delta^q_{ij})_{MM}$	$\langle \delta^q_{ij} angle$	
d	12	0.03	0.002	
d	13	0.2	0.07	
d	23	0.6	0.2	
U	12	0.1	0.008	

Flavor Bounds (K, D, B, Bs mixing, ...) controlled by

$$(\delta_{ij}^q)_{MM} = \frac{1}{\tilde{m}_q^2} \sum_{\alpha} (K_M^q)_{i\alpha} (K_M^q)_{j\alpha}^* \Delta \tilde{m}_{q\alpha}^2$$

mixing matrices mass splitting

$$(m=1\text{TeV})$$

$$\begin{array}{c|cccc} q & ij & (\delta^q_{ij})_{MM} & \langle \delta^q_{ij} \rangle \\ \hline d & 12 & 0.03 & 0.002 \\ \hline d & 13 & 0.2 & 0.07 \\ \hline d & 23 & 0.6 & 0.2 \\ \hline u & 12 & 0.1 & 0.008 \\ \end{array}$$

large mixing means splitting must be << 1 Flavor dynamics: alignment Dynamics (e.g. U(1)horiz.) generates hierarchies in masses & mixings. Consequence: partial alignment with SM

 $(\bar{Q}_L^i Q_L^j)$ $Y_U Y_U^\dagger$ VCKM $Y_D Y_D^{\dagger}$

 $(\overline{d}_R^i \overline{d}_R^j)$

 $Y_D^{\dagger}Y_D$

Flavor dynamics: alignment Dynamics (e.g. U(1)horiz.) generates hierarchies in masses & mixings. Consequence: partial alignment with SM

 $(\bar{Q}_L^i Q_L^j)$ $Y_U Y_U^\dagger$ $Y_D Y_D^{\dagger}$

 $(\bar{d}_R^i d_R^j)$

Left-handed (Q_L): either aligned with up or downs Right-handed (u_R , d_R): can be fully aligned

 $Y_U^{\dagger}Y_U$ NP $(\bar{u}_R^i u_R^j)$ $(ar{Q}^i_L Q^j_L)$ $Y_U Y_U^\dagger$ $Y_D Y_D^{\dagger}$ $(\overline{d}_R^i d_R^j)$ $Y_D^{\dagger} Y_D$ + LR, RL

Left-handed (Q_L): either aligned with up or downs \rightarrow limited splitting Right-handed (u_R , d_R): can be fully aligned

→ any splitting

 $(\bar{u}_R^i u_R^j)$ $(\bar{Q}_L^i Q_L^j)$ $Y_U Y_U^\dagger$ $Y_D Y_D^{\dagger}$ $(\overline{d}_{R}^{i}d_{R}^{j})$ $Y_D^{\dagger}Y_D$ + LR, RL

 $\tilde{u}_R, \ \tilde{c}_R$

Degenerate

Minimal Flavor

Anarchy!

Collider estimate

Cross-sections roughly scale like ~1/m^6.

Example: 8 light squarks \rightarrow 2 light squarks Shift limit only by $\sim 4^{1/6}-1\approx 25\%$

→ too naive!

Dedicated study needed

- Production cross-section can be flavor dependent through p.d.f's (u vs. d, sea vs. valence)
- Experimental efficiencies have thresholds and current limits are on the thresholds

Light flavor squark searches

M. Papucci, J. Ruderman G. Perez, R. Mahbubani, AW, PRL

Effect of the efficiency threshold:

Pythia/MadEvent

+Prospino/NLLfast +checks with MLM matched sample

Pythia/MadEvent

+Prospino/NLLfast +checks with MLM matched sample

simplified Model available → CMS

ee Seeree

+Prospino/NLLfast +checks with MLM matched sample

 $\Pi_i \text{poiss}(s_i + b_i \delta b_i) \text{ gauss}(\delta b_i) \to CL_s$

M. Papucci, J. Ruderman G. Perez, R. Mahbubani, AW

G. Perez, R. Mahbubani, AW

G. Perez, R. Mahbubani, AW

MFV splitting - flavor trivial light squarks

Collider vs. Flavor for sea & valence squarks

 $H_{\text{eff}} = C_1 \, (\overline{u}^i \gamma_\mu P_L \, c^i) \, (\overline{u}^j \gamma^\mu P_L \, c^j) \,, \qquad x_D \simeq 2.6 \times 10^{10} \text{ Re } C_1$ Assuming full down alignment, calculated w/o MIA End of Susy

Brando's talk

Strong EWSB (Composite Higgs)

e.g. SO(5)/SO(4) $\xi = v^2/f^2$

strong

sector

Why is the Higgs light?

Kaplan; Agashe et. al

SILH: Giudice, Grojean, Pomarol, Rattazi

$$a = \sqrt{1 - \xi}$$

$$c_f = \frac{1 - (1+n)\xi}{1 - \xi}$$

$$\xi = \left(\frac{v}{f}\right)^2$$

Pre-Moriond 2013

Montull/Riva

Fit to ATLAS/CMS & Tevatron

post-Moriond fit: see e.g. Giardino et al, Falkowski et a

Vector

Scale of strong SSB

see e.g. Giardino et al

Scale of strong SSB

see e.g. Giardino et al

Addressing flavor... q_i

- Classical Techni-color/composite Higgs failed, post-modern conformal TC disfavored by CFT theorems
- Full compositeness **excluded** by LEP
- Partial compositeness:

bilinear

 q_j

 q_i

 q_j

Addressing flavor...

- Classical Techni-color/composite Higgs failed, post-modern conformal TC disfavored by CFT theorems
- Full compositeness **excluded** by LEP

Partial compositeness:

Partial compositeness

Linear couplings imply mass $\mathcal{L} = \bar{\psi} i \partial \psi + \bar{\chi} (i \partial - m_*) \chi + \lambda f \bar{\psi} \chi + h.c.$ mixings:

Rotate to mass eigenbasis:

$$\begin{pmatrix} \psi \\ \chi \end{pmatrix} \to \begin{pmatrix} \cos \varphi & \sin \varphi \\ \sin \varphi & \cos \varphi \end{pmatrix} \begin{pmatrix} \psi \\ \chi \end{pmatrix} \qquad \tan \varphi = \frac{\lambda f}{m_*} ,$$

 $|\mathsf{RGE} \text{ of } \mathcal{L}_{\mathrm{UV}} \supset \lambda \bar{\mathcal{O}}_R \psi_L \quad \mathsf{UV} = \mathsf{V} |\mathsf{IR}|$

 $\mathsf{RGE} \text{ of } \mathcal{L}_{\mathrm{UV}} \supset \lambda \bar{\mathcal{O}}_R \psi_L \quad \mathsf{UV} \blacksquare \mathsf{V} \blacksquare \mathsf{V}$

 $\mathsf{RGE} \text{ of } \mathcal{L}_{\mathrm{UV}} \supset \lambda \bar{\mathcal{O}}_R \psi_L \quad \mathsf{UV} \blacksquare \mathsf{V} \blacksquare \mathsf{V}$

Csaki/Falkowski/AW, Casagrande et al, Agashe et. al, Buras et al. ...

... almost works $\Lambda_{\epsilon_K} = 10^5 \,\mathrm{TeV} \rightarrow m_{\rho} \gtrsim 10 \,\mathrm{TeV}$

Csaki/Falkowski/AW, Casagrande et al, Agashe et. al, Buras et al. ...

 $\mathcal{L}_{Yukawa} = \epsilon^{i}_{q} q^{i}_{L} \mathcal{O}^{i}_{q} + \epsilon^{i}_{u} u^{i}_{L} \mathcal{O}^{i}_{u} + \epsilon^{i}_{d} d^{i}_{L} \mathcal{O}^{i}_{d}$

Yukawas

 $Y_u^{ij} \sim \epsilon_a^i \epsilon_u^j g_{\rho}$

 $Y_d^{ij} \sim \epsilon_a^i \epsilon_d^j g_\rho$

 $\Delta F=1$

 $\epsilon^i_q \epsilon^j_u g_\rho \times \frac{v}{m_\rho^2} \times \frac{g_\rho^2}{16\pi^2} \ \bar{q}^i \sigma_{\mu\nu} u^j G_{\mu\nu}$

 $\Delta F=2$

 $\epsilon^{i}_{q}\epsilon^{j}_{d}\epsilon^{k}_{q}\epsilon^{\ell}_{d} \times \frac{g^{2}_{\rho}}{m^{2}_{\gamma}} \quad (\bar{q}^{i}\gamma^{\mu}d^{j})(\bar{q}^{l}\gamma_{\mu}d^{\ell})$

Flavor Constraints

Agashe et. al; Csaki, Falkowski, AW; Buras et. al.; Neubert et al; Isidori et. al, ... Partial compositeness not the full story

Strong sector must have some flavor degeneracy:

quarks (and all possible resonances).

LHC8 limits

Vector mass

similar plot from CMS

LHC8 limits

LHC8 limits

Vector mass

CMS dijet angular searches

$$\mathcal{L} \quad \frac{2\pi}{\Lambda^2} \quad q_{L,R} \gamma^{\mu} q_{L,R} \quad 2$$

a

ā

Octet width vs. fermionic partner mass

 $m_{
ho}$
Light Higgs => light fermionic top partners

Contino et al 07, Matsedonskyi, et al '12 ; Redi, Tesi 12; Marzocca et al ; Pomarol, Riva 12

Light Higgs => light fermionic top partners

Contino et al 07, Matsedonskyi, et al '12 ; Redi, Tesi 12; Marzocca et al ; Pomarol, Riva 12

Light Higgs MFV connection Redict al

Light Fermionic Partners

deVries, Redi, Sanz, AW, in prep.

$$\mathcal{L} = rac{g_s \kappa}{m_Q} \bar{Q} \sigma^{\mu
u} T^a q G^a_{\mu
u}$$

three-body

chromo-magnetic (loop)

Both decay modes suppressed and result in a narrow width

$$\Gamma_{\rm chromo}(Q \to qg) = \frac{4}{3} \alpha_s \kappa^2 s_{Ru}^2 \frac{1}{m_Q^5} \left| m_Q^2 - m_q^2 \right|^3$$

$$\Gamma_{3\text{-body}}^{\rho}(Q \to qq'\bar{q}') = \begin{cases} \frac{\alpha_s^2}{72\pi} \left[|X_L^{qQ}|^2 + |X_R^{qQ}|^2 \right] \sum_{q'} \left[|X_L^{q'q'}|^2 + |X_R^{q'q'}|^2 \right] \\ \times \left[\frac{6m_{\rho}^4 - 3m_Q^2 m_{\rho}^2 - m_Q^4}{m_Q m_{\rho}^2} + \frac{m_{\rho}^2 (m_{\rho}^2 - m_Q^2)}{m_Q^3} \log \frac{m_{\rho}^2 - m_Q^2}{m_{\rho}^2} \right] & \text{if } m_Q < m_{\rho} \\ \frac{\alpha_s}{6} \left(\frac{m_Q^6 - 3m_Q^2 m_{\rho}^4 + 2m_{\rho}^6}{m_Q^3 m_{\rho}^2} \right) \left[|X_L^{qQ}|^2 + |X_R^{qQ}|^2 \right] & \text{if } m_Q \gg m_{\rho} \end{cases}$$

$$(4.2)$$

Two body vs. three body

Search strategies deVries, Redi, Sanz, AW, in prep.

Four jet analysis CMS 7 TeV 2.2 fb-1 [CMS PAS EXO-11-016]

optimized for pair production of two heavy resonances

Six jet analysis CMS 7 TeV 5.0 fb-1 [CMS-EXO-11-060]

Four jet analysis by CMS 7 TeV 2.2 fb-1 However, optimized for pair production of two heavy resonances

Q

a

Dedicated search

- Require four jets with $|\eta| < 2.5$ and $p_T > 150$ GeV.
- The leading jet must have a p_T larger than 500 GeV.
- The other three jets must combine into an invariant mass of more than 1500 GeV.

Dedicated search

- Require four jets with $|\eta| < 2.5$ and $p_T > 150$ GeV.
- The leading jet must have a p_T larger than 500 GeV.
- The other three jets must combine into an invariant mass of more than 1500 GeV.

Conclusions

- Flavor can hide or enhance visibility at high p_T
- In the next years, naturalness on trial: reaching critical sensitivity for scalar/ fermion partners
- MFV composite Higgs is very visible, EWPT ok with large compositeness: expect discovery/exclusion with LHC14