Diffractive Charged Currents in ep Probe of Pomeron Flavour Content

Related to tests from W+/W- asymmetry in pp diffraction

Radek Žlebčík Charles University in Prague

26.11. 2012 Krakow

Charged Currents as a Flavour Probe (Parton Model View)

To extract these components, measurements with several beam energies needed (compare to F, measurement)

CC Event Topology

Missing Et due to outgoing neutrino

Diffraction selection by LRG requirement of by leading proton

tagging

ZEUS event display

All interesting kinematics calculable from momenta of X system

$$y = \frac{E^{X} - p_{z}^{X}}{2E_{e}} \qquad Q^{2} = \frac{(p_{T}^{X})^{2}}{1 - y} \qquad x_{IP} = \frac{Q^{2} + 2E_{e}(E^{X} + p_{z}^{X})}{4E_{e}E_{p}} \qquad \beta = \frac{Q^{2}}{x_{IP}ys}$$

Diffractive Factorization

QCD factorization formula (in CC y->W⁺⁻):

$$d\sigma^{D}(\gamma p \rightarrow Xp) = \sum_{parton_{i}} f_{i}^{D}(\beta, Q^{2}, x_{IP}, t) * d\hat{\sigma}^{\gamma i}(\beta, Q^{2})$$

 f_i^D DPDFs, obeys DGLAP evolution, process independent

 X_{IP} Momentum fraction of the diffractive exchange

 $d \hat{\sigma}^{\gamma i}$ Process dependent partonic x-section, calculable within pQCD

β Fraction of exchange momentum entering hard subprocess

In addition to DGLAP evolution, Regge vertex factorization is assumed:

$$f_{i}^{D}(\beta, Q^{2}, x_{IP}, t) = f_{IP/p}(x_{IP}, t) \cdot f_{i}^{IP}(\beta, Q^{2})$$

$$f_{IP/p}(x_{IP},t) = \frac{e^{Bt}}{x_{IP}^{2\alpha(t)-1}}$$

Pomeron flux factor
Parametrization inspired
by "old" Regge theory

Pomeron PDF Obey DGLAP evolution

H1 2006 Fit B ansatz:

$$f_u^{IP} = f_d^{IP} = f_s^{IP} \qquad f_c^{IP} = 0$$
$$f_q^{IP} = f_{\bar{q}}^{IP}$$

Resolved Pomeron model with Fit B predicts zero e+/e- asymmetry in CC

Situation at HERA

 Measurement probably done only for HERA I 1999/2000 data (~ 61 pb⁻¹)

$$H1$$
 $\sigma_{H1}^{\textit{CCdiff}} = 0.39 \pm 0.12 (\textit{stat}\,) \pm 0.07 (\textit{syst}\,) \text{pb}$ **10 events**

ZEUS $\sigma_{\text{ZEUS}}^{\text{CCdiff}} = 0.49 \pm 0.20 (\text{stat}) \pm 0.13 (\text{syst}) \, \text{pb}$ 6 events

Around 2 % of CC x-section in both cases

Analysis cuts
$$Q^{2} > 200 \,\mathrm{GeV}^{2}$$

$$y < 0.9$$

$$x_{IP} < 0.05$$

High Q2 cut to suppress background from diffractive photoproduction

e+/e- asymmetry not studied

Predictions for LHeC

Calculation performed by MC RAPGAP with H1 2006 Fit B
The same cuts as in HERA measurement

Events counts without losses due to detector acceptance

 Presence of Pomeron valence quark clearly visible form e+/e- asymmetry

$$\frac{d\sigma}{dxdy}(e^{-}p)\propto[(d+s)+(\overline{u})(1-y)^{2}]$$

$$\frac{d\sigma}{dxdy}(e^{+}p)\propto[(\overline{d}+\overline{s})+(u)(1-y)^{2}]$$

$$\frac{d \sigma}{dxdy}(e^-p) - \frac{d \sigma}{dxdy}(e^+p) \propto \left[(d - \overline{d} + s - \overline{s}) - (u - \overline{u})(1 - y)^2 \right]$$

 Charged asymmetry from ~1% in DPDFs observable at LHeC

Predictions for LHeC Flavour Asymmetry

• From shape of y distribution one can distinguish between UP and DOWN quarks

$$\frac{d\sigma}{dxdy}(e^{-}p)\propto[2+(1-y)^{2}]q$$

Without variation

e⁺p σ^{CC}_{diff} (errors for 10 fb⁻¹)

d=1.0*d_{fit}, s=1.0*s_{fit}

 $d=1.5*d_{fit}$, $s=0.5*s_{fit}$

d=0.5*d_{fit}, s=1.5*s_{...}

Conclusion

- Due to higher luminosity and larger cross section at LHeC energies enormous increase in statistics for diffractive CC
- e⁺/e⁻ asymmetry indicates Pomeron valence quarks
- Pomeron u/d asymmetry observable in shape of y-distribution

LHeC collider opens new area of hard diffraction – CC New chance to test diffractive factorization