Diffractive Charged Currents in ep Probe of Pomeron Flavour Content

Related to tests from W+/W- asymmetry in pp diffraction
Radek Žlebčík Charles University in Prague

26.11. 2012 Krakow

Charged Currents as a Flavour Probe (Parton Model View)

CC Event Topology

- Missing Et due to outgoing neutrino
- Diffraction selection by LRG requirement of by leading proton tagging

ZEUS event display

- All interesting kinematics calculable from momenta of X system

$$
y=\frac{E^{X}-p_{z}^{X}}{2 E_{e}} \quad Q^{2}=\frac{\left(p_{T}^{X}\right)^{2}}{1-y} \quad x_{I P}=\frac{Q^{2}+2 E_{e}\left(E^{X}+p_{z}^{X}\right)}{4 E_{e} E_{p}} \quad \beta=\frac{Q^{2}}{x_{I P} y S}
$$

Diffractive Factorization

QCD factorization formula (in CC $\mathbf{\gamma}->\mathbf{W}^{+}$):

$$
\mathrm{d} \sigma^{D}(\gamma p \rightarrow X p)=\sum_{\text {parton }}^{i} f_{i}^{D}\left(\beta, Q^{2,} x_{I P}, t\right) * \mathrm{~d} \hat{\sigma}^{\gamma i}\left(\beta, Q^{2}\right)
$$

f_{i}^{D}
DPDFs, obeys DGLAP evolution, process independent
$\mathrm{d} \hat{\sigma}^{\gamma i}<$ Process dependent partonic x-section, calculable within pQCD

$$
X_{I P}^{\text {Momentum fraction }} \text { of the diffractive exchange }
$$

$\beta \begin{aligned} & \text { Fraction of exchange momentum } \\ & \text { entering hard subprocess }\end{aligned}$

In addition to DGLAP evolution, Regge vertex factorization is assumed:
$\alpha(t)=\alpha_{0}+\alpha^{\prime} t \quad f_{i}^{D}\left(\beta, Q^{2,} x_{I P}, t\right)=f_{I P / p}\left(x_{I P}, t\right) \cdot f_{i}^{I P}\left(\beta, Q^{2}\right)$

$$
f_{I P / p}\left(x_{I P}, t\right)=\frac{e^{B t}}{x_{I P}^{2 \alpha(t)-1}}
$$

Pomeron flux factor
Parametrization inspired by „old" Regge theory

Pomeron PDF Obey DGLAP evolution

H1 2006 Fit B ansatz:

$$
\begin{gathered}
f_{u}^{I P}=f_{d}^{I P}=f_{s}^{I P} \quad f_{c}^{I P}=0 \\
f_{q}^{I P}=f_{\bar{q}}^{I P}
\end{gathered}
$$

Resolved Pomeron model with Fit B predicts zero e+le- asymmetry in CC

Situation at HERA

- Measurement probably done only for HERA I 1999/2000 data ($61 \mathrm{pb}^{-1}$)

$$
\begin{gathered}
\mathrm{H1} \\
\sigma_{H 1}^{\text {CCdiff }}=0.39 \pm 0.12(\text { stat }) \pm 0.07(\text { syst }) \mathrm{pb} \\
10 \text { events }
\end{gathered}
$$

Around 2% of CC x-section in both cases

$$
\begin{gathered}
\begin{array}{c}
\text { Analysis cuts } \\
Q^{2}>200 \mathrm{GeV}^{2} \\
y<0.9 \\
x_{I P}<0.05
\end{array}
\end{gathered}
$$

High Q2 cut to suppress background from diffractive photoproduction
e+le- asymmetry not studied

$$
\begin{gathered}
\text { ZEUS } \\
\sigma_{\text {ZEUS }}^{\text {CCdiff }}=0.49 \pm 0.20(\text { stat }) \pm 0.13(\text { syst }) \mathrm{pb} \\
6 \text { events }
\end{gathered}
$$

- H1 Data ($\mathrm{Q}^{2}>200 \mathrm{GeV}^{2} ; \mathrm{y}<0.9 ; \mathrm{x}_{1 \mathrm{p}}<0.05$)
- H1 2006 DPDF Fit A
..... (IR contrib.)
Eur.Phys.J. C48 (2006) 715-748

Predictions for LHeC

Calculation performed by MC RAPGAP with H1 2006 Fit B The same cuts as in HERA measurement
HERA
$920+27.5$
$\left.\sigma_{\mathrm{H} \text { Cdif }}^{\text {C. }} \mathrm{MC}\right)=0.4 \mathrm{pb}$
25 events $\left(60 \mathrm{pb}^{-1}\right)$

Events counts without losses due to detector acceptance

- Presence of Pomeron valence quark clearly visible form e+/e- asymmetry

$$
\begin{gathered}
\frac{d \sigma}{d x d y}\left(e^{-} p\right) \propto\left[(d+s)+(\bar{u})(1-y)^{2}\right] \\
\frac{d \sigma}{d x d y}\left(e^{+} p\right) \propto\left[(\bar{d}+\bar{s})+(u)(1-y)^{2}\right] \\
\frac{d \sigma}{d x d y}\left(e^{-} p\right)-\frac{d \sigma}{d x d y}\left(e^{+} p\right) \propto\left[(d-\bar{d}+s-\bar{s})-(u-\bar{u})(1-y)^{2}\right]
\end{gathered}
$$

- Charged asymmetry from $\sim 1 \%$ in DPDFs observable at LHeC

Predictions for LHeC Flavour Asymmetry

- From shape of y distribution one can distinguish between UP and DOWN quarks

$$
\frac{d \sigma}{d x d y}\left(e^{-} p\right) \propto\left[2+(1-y)^{2}\right] q
$$

Without variation

Conclusion

- Due to higher luminosity and larger cross section at LHeC energies enormous increase in statistics for diffractive CC
- $\mathrm{e}^{+} / \mathrm{e}^{-}$asymmetry indicates Pomeron valence quarks
- Pomeron u/d asymmetry observable in shape of y-distribution

LHeC collider opens new area of hard diffraction - CC
New chance to test diffractive factorization

