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Motivations

@ One of the important longstanding theoretical questions raised by QCD is
its behaviour in the perturbative Regge limit s > —t

@ Based on theoretical grounds, one should identify and test suitable
observables in order to test this peculiar dynamics

t
ha(MF) (M)
<— vacuum quantum
S —
number
ha(M3) hy (M)

hard scales: M7, M3 > Ajop or Mi?, M5? > Adcp or t > Abep
where the t—channel exchanged state is the so-called hard Pomeron
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How to test QCD in the perturbative Regge limit?

What kind of observables?

@ perturbation theory should be applicable:
selecting external or internal probes with transverse sizes < 1/Agcp or by
choosing large ¢ in order to provide the hard scale
p—0

9 governed by the "soft" perturbative dynamics of QCD

m =0
and not by its collinear dynamics wﬁrrri/o -0
m =0

= select semi-hard processes with s > p2, > A%CD where p%, are
typical transverse scale, all of the same order
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How to test QCD in the perturbative Regge limit?

Some examples of processes

@ inclusive: DIS (HERA), diffractive DIS, total v*~v* cross-section (LEP,
ILC)

@ semi-inclusive: forward jet and 7° production in DIS, Mueller-Navelet
double jets, diffractive double jets, high pr central jet, in hadron-hadron
colliders (Tevatron, LHC)

9 exclusive: exclusive meson production in DIS, double diffractive meson
production at e"e™ colliders (ILC), ultraperipheral events at LHC
(Pomeron, Odderon)

a/36



The specific case of QCD at large s

QCD in the perturbative Regge limit
@ Small values of aus (perturbation theory applies due to hard scales) can be
compensated by large In s enhancements.

= resummation of >~ (as Ins)™ series (Balitski, Fadin, Kuraev, Lipatov)
— introduction of a new arbitrary scale so : Ins — In >

~ ~ s(aslns) ~ 5 (s Ins)?

@ this can be put in the following form :

<« Impact factor
< Green's function

< Impact factor
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Higher order corrections

@ Higher order corrections to BFKL kernel are known at NLL order (Lipatov
Fadin; Camici, Ciafaloni), now for arbitrary impact parameter
as Yy, (as Ins)" resummation

@ impact factors are known in some cases at NLL

@ v* — 4* at ¢t = 0 (Bartels, Colferai, Gieseke, Kyrieleis, Qiao;
Balitski, Chirilli)

o forward jet production (Bartels, Colferai, Vacca)

¢ inclusive production of a pair of hadrons separated by a large interval of
rapidity (Ivanov, Papa)

@ v} — pr in the forward limit (Ivanov, Kotsky, Papa)
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Mueller-Navelet jets: Basics

Mueller-Navelet jets

@ Consider two jets (hadrons flying within a narrow cone) separated by a
large rapidity, i.e. each of them almost fly in the direction of the hadron
“close” to it, and with very similar transverse momenta

@ in a pure LO collinear treatment, these two jets should be emitted back to
back at leading order: A¢p — 1w =0 (A¢p = ¢1 — P2 = relative azimuthal
angle) and k1 1=Fk.12. There is no phase space for (untagged) emission
between them

p(m)\L

Yy large - rapidity

| jeta (ki2, ¢2)

Beam axis

¢7 . zero rapidity
”—

large + rapidity
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Master formulas

kr-factorized differential cross-section

do
= [ dond d’k; d%k
dlks1|d|ks2| dys1 dyse / dy1dd 2 / L d%k,

ki, i1, c0 x ®(kyi,zs1, —ki)
X G(kl, k2, §)
kj2, 02,772 x ®(ky2,x2, ko)

with ®(kjo, xj2, ko) = [dxa f(z2)V(ke,z2)  f = PDF zy = Eileys
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Studies at LHC: Mueller-Navelet jets

@ in LL BFKL (~ > (asIns)™), the emission between
these jets leads to a strong decorrelation between the
jets, incompatible with pp Tevatron collider data

@ up to recently, the subseries s > (s Ins)™ NLL was
included only in the Green's function, and not inside the
jet vertices
Sabio Vera, Schwennsen
Marquet, Royon

@ the importance of these corrections was not known
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Numerical implementation

Because of the structure of the NLL jet vertex, numerical implementation is
quite delicate (requires special grouping of the terms, etc.)

9 First study done with a Mathematica code
rather slow = access to a limited number of configurations

D. Colferai; F. Schwennsen, L. Szymanowski, S. Wallon
JHEP 1012:026 (2010) 1-72

@ New
<>

[ N A 2

¢ ¢

B.D.,

Fortran code

much faster

Check of the Mathematica based results

Stability studies (PDFs, etc.) made easier

Check of previous mixed studies (NLL Green's function + LL jet vertices)
Allows for k; integration over a finite range

A comparison with the recent small R study of D. Yu. lvanov et al. has
been performed

Study of the azimuthal distribution

More detailed comparison with NLO DGLAP

Problems remain with v integration for low Y (<4)

L. Szymanowski, S. Wallon., in preparation
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Numerical implementation

In practice

Following results are with:
o \5=TTeV
@ jet cone-algorithm with R = 0.5
o MSTW 2008 PDFs
@ ur = pr = p (imposed by the PDFs)
9 p and /3¢ set equal to vVksiks2
@ two-loop running coupling as(pu?) with as(M2) = 0.1176
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Integration over |k |

Previous results (arxiv:1002.1365) were shown for fixed |kji1| and |kj2|. But
experimental data is integrated over some range, kKjmin < |ky1], [ku2|

With our faster code we are now able to integrate |ks1| and |k2| over some

finite range

Because the cross section decreases quickly with the transverse momentum of
jets, we can choose an upper bound for |kji12| to get a good estimate of the

total cross section.
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K smax (GeV)

= for kymin = 35 GeV, we need to integrate up to Kjmax ~ 60 GeV
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Integration over |k |

Energy-momentum conservation issues

9@ BFKL does not preserve energy-momentum conservation

@ This violation is expected to be smaller at higher order in perturbation
theory, i.e. NLL versus LL

@ In practice: avoid to use all the available collider energy:
-1 2, B
Y, < cosh Iil N
J,i
— A lower |ks| means a larger validity domain : a |ks| as small as

possible is preferable

@ With only a lower cut on |k;|, one has to integrate over regions where the
BFKL approach may not be valid anymore : |k;| =60 GeV — Y < 7.3

@ For this reason it would be nice to have a measurement with also an upper
cut on transverse momentum, Kjmin < KJ < KJymax
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Collinear resummation (Jki| = |ksz| = 35 GeV)

Azimuthal correlation (cos¢): more on the (anti)collinear resummation effects
In the previous study the collinear resummation (Salam; Ciafaloni, Colferai) was
only taken into account for n =0

C
G — (cos ) e

pure LL pure LL

LL vertices + NLL Green's fun. LL vertices + NLL Green's fun.

LL vertices + NLL resum. (n = 0) Green's fun. LL vertices + NLL resum. (all n) Green's fun.
NLL vertices + NLL Green's fun. NLL vertices + NLL Green's fun.

NLL vertices + NLL resum. (n = 0) Green's fun. NLL vertices + NLL resum. (all n) Green’s fun.

Taking into account the collinear improvement also for n > 0 we find the
results don’t change very much when using the NLL vertex
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Checks: comparison with previous LL studies

Azimuthal correlation (cos¢): more on the (anti)collinear resummation effects

Marquet, Royon our Fortran code

pure LL
LL vertices + NLL Green's fun.
LL vertices + NLL resummed Green's fun.

Taking into account the collinear improvement also for n > 0 we find results
close to the previous studies
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Checks: small cone approximation (k1| = 30GeV, |kj2| = 35GeV)

Recently a computation of the jet vertex at NLO in the small cone
approximation (R < 1) was made.

F. Caporale, D. Yu. Ivanov, B. Murdaca, A. Papa, A. Perri

arXiv:1112.3752 [hep-ph]

Ao A(cos ¢)
o (cos ¢)

O T T T 7 T T T T T T T T T T TT 04 T T

0.2

-0.2

o
LI L N B L B B

PO N B RN TR B (O

6 7 8 9 10 6

Cross section (cos @)

The comparison between the exact and approximate treatments shows good
agreement even for a cone parameter R = 0.5

Note: Y « 8 for BFKL validity (e-m conservation issues)
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PDF errors (‘le‘ = 30GeV, kJ‘Z‘ =30 G(J\/v)

Cross-section: PDF errors

Relative variation of the cross section when using other PDF sets than
MSTW 2008 (full NLL approach)

Ao
(o8
65—
—— ABKMO09
02 —— HERAPDF 1.5
—— NNPDF 2.1
0.1
0
‘0‘1¥
02 - —
P N T R B B v

(very similar values for the LL computation)

(cos p), (cos2¢), etc. vary by less than 2% when changing PDF set.
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Results: asymmetric configuration

Results for an asymmetric configuration

In this section we choose the cuts as
@ 35GeV < kji| < 60GeV
9 50GeV < |kj2| < 60GeV
9 0<y1,y2 <47

Such an asymmetric configuration is required by DGLAP like approaches, which
are unstable for symmetric configurations.

18 /36



Results: asymmetric configuration

Cross-section: NLO DGLAP versus NLL BFKL

o [nb]
le+08 | | | | | | | | |
1le+06 — —
10000 — 35GeV < k1| < 60 GeV
50 GeV < |kyj2| < 60 GeV
100 —
0<yi <4.7
1 ] 0<y2 <4.7
—— pure LL
0.01 ——— LL vertex + NLL Green fun. -
— LL vertex + NLL resum. Green fun.
———— NLL vertex + NLL Green fun.
0.0001 — NLL vertex + NLL resum. Green fun.
. NLO DGLAP
1606 | | | | | | | | Ly
0 1 2 3 4 5 6 7 8 9
dots = based on the NLO DGLAP parton generator Dijet (thanks to M. Fontannaz)
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Results: asymmetric configuratio

Cross-section: stability with respect to so and ur = ur changes

o [nb] o [nb]
10000 - T 7 10000 - T 7
= 1000 =, =
- P E
i
3 0= i 13 —
- 1E i -
3 01 t 3
0.01 pure LL 001 [~ LL vert. + NLL resum. Green's fun. 1
wE = pe/2 wE = pe/2
0.001 |- hr = 2ur 0.001 |- hr — 2
F Vi = V)2 Vio > vso/2
L N a| L N
16.05 I I I I I Y .05 I I I I I
4 5 6 7 8 9 4 5 6 7 8 9
o [nb] o [nb]
10000 T 1 10000 T ]
1000 ¢ - 1000
R ] £
1200 P oy : = 100
. N L3 § 4 10
£ - ]
1 T 1 — 1
01 - 01
001 = L vert. + NLL resum. Green's fun ] 0.01
wr = e /2
0.001 | e = 2pr - 0.001
I VEo = Vo /2 X\i: I
00001 |-, Y& AV i 0.0001 -
16-05 L L L L L Y 16-05 Y
4 5 6 7 8 9 4 5 6 7 8 9
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Results: asymmetric configuration

Compared cross-sections including uncertainties

o [nb]
1e+08 T T T T T T T T
1e+06 .
10000 = — 35GeV < k1| < 60 GeV
50 GeV < |kj2| < 60 GeV
100 _
0<y1 <47
1 - 0<ys <4.7
[}
NLL vertex + NLL Green fun.
001 = s HF = pF/2
HFE — 2up
——————— — 2
0.0001 [— g = 55”{
. NLO DGLAP
16-06 | | | | | | | | | Y
0 1 2 3 4 5 6 7 8 9

@ Putting (almost) the same scale, exactly the same cuts, we get a
noticeable difference between NLO DGLAP and NLL BFKL for
4.5 <Y < 8.5: oNLO > ONLLBFKL

@ This result is rather stable w.r.t so and p choices.

21/36



Results: asymmetric configuration

Azimuthal correlation (cos ): NLO DGLAP versus NLL BFKL

35GeV < |kj1| < 60 GeV

08 50 GeV < |ka| < 60 GeV
0.6 0<yi <4.7
0<y2 <4.7

0.4 pure LL

——— LL vertex + NLL Green fun.
— LL vertex + NLL resum. Green fun.

02 NLL vertex + NLL Green fun.
: NLL vertex + NLL resum. Green fun.
- . NLO DGLAP
0 L L L1 L1l y
0 1 2 3 4 5 6 7 8 9
dots = based on the NLO DGLAP parton generator Dijet (thanks to M. Fontannaz)
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Results: asymmetric configuration

Azimuthal correlation: (cos ¢)

35GeV < k1| < 60 GeV
50 GeV < |kj2| < 60 GeV

0<yi <4.7
0<ys <4.7
04— NLL vertex + NLL Green fun. -
L pE = pp/2 L
HF = 2R |
02 50 = /50/2 i
/50 = 24/50 B
- . NLO DGLAP 4
o | | | | | | | | Ly
0 1 2 3 4 5 6 7 8 9

@ Putting (almost) the same scale, exactly the same cuts, we get a
difference between NLO DGLAP and NLL BFKL for 4.5 <Y < 8.5

@ This difference is washed-out because of sy and i dependency:
(cos p)NLO ~ (COS Q)NLL BFKL
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Results: asymmetric configuration

Azimuthal correlation (cos2p): NLO versus NLL BFKL

(cos 2¢)
12 | | | | | | | | |
1
35GeV < |kji| < 60 GeV
08 50 GeV < |kj2| < 60 GeV
0.6 0<ys <47
0<y2 <4.7

0.4

LL vertex + NLL Green

LL vertex + NLL resum.
02 NLL vertex + NLL Green fun>

NLL vertex + NLL resum. Green fun-
NLO DGLAP

.
| | | | | | | |
0 1 2 3 4 5 6 7 8 9

dots = based on the NLO DGLAP parton generator Dijet (thanks to M. Fontannaz)

Y
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Results: asymmetric configuration

Azimuthal correlation: (cos2y)

35GeV < |kj1| < 60 GeV

0.8 50 GeV < |kj2| < 60 GeV
0<yi <4.7

0.6
0<ys <47

0.4 NLL vertex + NLL Green fun.

"""" e = e /2
HE = 2uF

021 ¢ V50 = V/s0/2 IS
V50 = 2¢/50

= e NLO DGLAP E

0 | | | | | | | | Ly
0 1 2 3 4 5 6 7 8 9

@ Putting (almost) the same scale, exactly the same cuts, we get a
difference between NLO DGLAP and NLL BFKL for 4.5 <Y < 8.5

@ This difference is washed-out because of sy and i dependency:
(cos 2¢)NLo ~ (COS 290)NLL BFKL
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Results: asymmetric configuration

Azimuthal correlation (cos2¢)/(cos ¢): NLO versus NLL BFKL

(03 2¢)/ (cos )
12 | | | | | | | | |
1
35GeV < |kji| < 60 GeV
08 50 GeV < |kj2| < 60 GeV
0.6 0<y <47
0<y2 <4.7

0.4 pure LL
LL vertex + NLL Green fun.

LL vertex + NLL resum. Green fun.

02 NLL vertex + NLL Green fun. —
: NLL vertex + NLL resum. Green fun.
- . NLO DGLAP B
0 | | | | | | | | Ly
0 1 2 3 4 5 6 7 8 9

dots = based on the NLO DGLAP parton generator Dijet (thanks to M. Fontannaz)
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Results: asymmetric configuration

Azimuthal correlation: (cos2¢)/(cos ¢)

(cos 2¢0) / (cos )

12 T T T T T T T T T

04— NLL vertex + NLL Green fun.
"""" wr = pr /2 i
HE — 2R

02 f V50 = V/50/2 —
V50 =+ 2¢/s0

- . NLO DGLAP -
| | | | | | | |

0 1 2 3 4 5 6 7 8 9

Y

@ NLO DGLAP and NLL BFKL differ for 4.5 <Y < 8

(cos 2¢)NLO (cos 2¢)NLL BFKL
{cos P)NLO (cos Y)NLL BFKL

@ This result is rather stable w.r.t so and p choices.

35GeV < |kj1| < 60 GeV
50 GeV < |kjz| < 60 GeV

0<y <4.7
0<y2 <4.7
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Results: asymmetric configuration

Azimuthal correlation (cos 3¢p)/(cos 2¢): NLO versus NLL BFKL

(cos 3¢p) /(cos 2¢)
1
0.9 T
0.8 -
- 35GeV < |kji| < 60 GeV
07 = 50 GeV < |kjz| < 60 GeV
0.6 —
L 0<y <4.7
0.5 N 0<y2 <4.7
04 —
-_ —— pure LL _-
03 | ——— LL vertex + NLL Green fun. i
o2 LL vertex + NLL resum. Green fun. _
. ———— NLL vertex + NLL Green fun.
B NLL vertex + NLL resum. Green fun. T
0.1 | . NLO DGLAP ]
o N R IR RN N N N N B [
0 1 2 3 4 5 6 7 8 9

dots = based on the NLO DGLAP parton generator Dijet (thanks to M. Fontannaz)
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Results: asymmetric configuration

Azimuthal correlation: (cos 3y)/(cos 2¢)

(cos 3yp) /(cos 2¢)
12

35GeV < |kj1| < 60 GeV
50 GeV < |kjz| < 60 GeV

0<y <4.7
0<y2 <4.7

04— NLL vertex + NLL Green fun. 1
L wr = pr /2

HE — 2uF

02 f V30 = V/50/2 —
V50 =+ 2¢/s0
- . NLO DGLAP

0 ! ! ! ! ! ! ! ! Ly
0 1 2 3 4 5 6 7 8 9

@ NLO DGLAP and NLL BFKL differ for 5.5 <Y < 8.5

(cos 3p)NLO _ {€OS Bp)NLL BFKL
(cos 2¢)nLo (cos 2¢0)NLL BFKL

@ This result is rather stable w.r.t so and p choices.
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Results: symmetric configuration

Results for a symmetric configuration

In this section we show results for

@ 35GeV < |kyi|, k2| < 60 GeV

? O<y1,y2 < 4.7
These cuts should be close to the ones that will be used in forthcoming
analyses by ATLAS or CMS.

note:
@ results for (cos(n¢)) are similar to the asymmetric configuration

@ the cross section is even larger
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Results: symmetric configuration

Azimuthal distribution

Computing {cos(n¢)) up to large values of n gives access to the angular
distribution

%Z_; — % {1 —|—22cos (ng) (cos (ngb))}

n=1

This is a quantity accessible at experiments like ATLAS and CMS
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Results: symmetric configuratio

Azimuthal distribution

1do 1do 1de

23 v i b

087 08 7 08

071~ - 07| 4 07| 4

o6 |- B 06 - - 06 - -

os |- B o0s |- - o0s |- -

0 B 04 -

03 — 03 A -
02— // \\\ -

01 [ S]]
oLl 1 1 1 1 1 1 " o LL 1 1 1 1 1 1 @ o LL 1 1 1 1 1 1 @
3 2 1 0 T 2 3 B 2 1 o 1 2 3 ) 2 1 o 1 2 3
pure LL LL vertices + NLL Green’s fun. LL vert. + NLL resum. Green’s fun.

1de 1de
25 2
08 [T T T 08 [T T T

35GeV < k1| < 60 GeV
35GeV < |kj2| < 60 GeV

0<y <4.7
0 <y <4.7

NLL vert. + NLL Green’s fun. NLL vert. + NLL resum. Green’s fun.

Full NLL treatment predicts :
@ Less decorrelation for same Y

@ Slower decorrelation with increasing Y
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sults: symmetric configuration

Azimuthal distribution: stability with respect to so and ur = pr

1do 1do 1do
7ds 7d 7dp
0BT T 8T T T T T 8T T T T T T
pure LL — LL vertices + NLL Green’s fun — LL vert. 4 NLL resum. Green's fun. — 1
07 e = /2 -+ o e = o2 - orp e = o2 B
T = B ] T = i ] T = B ]
06 - Ml +4  osf VR IR < osf Mol Bl
05 - — 05 - — 05 - —
04 - oaf - oaf B
— 03 — 03 I/AN —
— 02 — 02 ) ; —
— 01 = 01 S =
ol I I I I I | ot I I I I | ot I I I I I |
3 2 1 3 1 2 3 9 3 2 1 3 1 2 3 3 2 1 3 1 2 E4
pure LL LL vertices + NLL Green’s fun. LL vert. + NLL resum. Green’s fun.
1do 1do
5 dp T ds
08T T T T T T 0BT T T T T T
orl NLL vert. + NLL Green's fun. — o NLL vert. + NLL resum. Green's fun.  —— 7
35GeV < |ky1| < 60GeV [ [Tl e ]
0o Vo' sl ] os [ Ve el ]
35GeV < ‘ka‘ < 60 GeV r Vso = 3y/sa Visa > 3/s0 ]
05 - — 05 - —
0<y <47 oall 1 oL ]
0<ys <47 03l 4 esf -
. . . 02— — 02 —
integrating on the bin: [ ]
o1 ] o1
6<Y=yl+y2<9.4 [z 2 |
oL I I I I I I oL I I I I I I
E) 2 1 [ 1 2 3 3 2 1 3 1 2 E4

The predicted ¢ distribution within full NLL treatment is

NLL vert. + NLL Green’s fun.

NLL vert. + NLL resum. Green’s fun.

stable
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Mueller-Navelet jets and MPI

Can Mueller-Navelet jets be a manifestation of multiparton interactions?

I

MN jets in the single partonic model MN jets in MPI
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Mueller-Navelet jets and MPI

i ¢ jar

single P ladder two PP ladders interferences
~ 5%7 ~ (77) 520 777
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Conclusion

@ We have deepened our complete NLL analysis of Mueller-Navelet jets

@ The effect of NLL corrections to the vertices is dramatic, similar to the
NLL Green function corrections

@ For the cross-section:
makes prediction more stable with respect to variation of scales p and so
sizeably below NLO DGLAP

@ Surprisingly small decorrelation effect
(cos ) very flat in rapidity Y
close to NLO DGLAP when taking into account the scale dependency

@ For (cos2¢p)/(cos ) and (cos 3¢p)/(cos 2¢) we see a difference between
NLL BFKL and NLO DGLAP

@ The ¢ distribution is strongly peaked around 0 and varies slowly with Y

@ Energy-momentum conservation and MPI processes could modify the
picture

9 Mueller Navelet jets provide much more complicate observables than
expected
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Backup

37/36



Results: symmetric configuration

Azimuthal correlation

(cos 2¢p) /(cos )

12 T T T T T T T T T

35GeV < |kj1| < 60 GeV
35GeV < |kyz| < 60 GeV

0<y <4.7
0<y2 <4.7

pure LL
LL vertex + NLL Green fun.
LL vertex + NLL resum. Green fun.

02 NLL vertex + NLL Green fun. 1
- —— NLL vertex + NLL resum. Green fun. p
0 | | | | | | | | L]y
0 1 2 3 4 5 6 7 8 9
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Results: symmetric configuration

Azimuthal correlation: stability with respect to so and ur = pr

(here only the full NLL approach is shown)

(cos 2¢) /{cos )

12 T T T T T T T T T

35GeV < |kj1| < 60 GeV
35GeV < |kjz| < 60 GeV

0<yi <4.7
0<y2 <4.7
04 — —
| NLL vertex + NLL Green fun. |
©opE = pp/2
02  UE = 2pF —
' - VD - vE/2
L s [80 = 24/80 ]
0 L L L1 L 1 ly
0 1 2 3 4 5 6 7 8 9

Very good stability in the range 5 <Y < 8
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Results: symmetric configuration

Azimuthal correlation (cos ¢): PDF errors

Relative variation of {(cos ) when using other PDF sets than MSTW 2008 (full
NLL approach)

A{cos p)
Teos o)
01 T T I T T T T I T T T T I T
r —— ABKMO09 1
F  —— CT10 R
I —— HERAPDF 15 B
0.05 - —— NNPDF2.1 -
: T ‘k]ﬂ = ‘k]g‘ = 35GeV
I / 0<yr <47
°E . 0<y2 <47
-0.05 - ]
o1l v w1 dy
7 8 9

(cos ) is much less sensitive to the PDFs than the cross section
(at LL (cos ¢) does not depend on the PDFs at all)
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Results: symmetric configuration

Relative variation o

(full NLL approach)

Azimuthal correlation: PDF errors

f (cos 2¢)

(cos ¢)

when using other PDF sets than MSTW 2008

A((cos 2¢) /(cos ¢))

(cos 2¢) /(cos ¢)
B I s e e R e e

F —— ABKMO09 b

L —— cT10 R

|  —— HERAPDF 1.5 E

0.05 - — NNPDF2.1 -

0k =

-0.05 — —

o1l v ]

7

8

9

Y

‘le‘ = ‘kJQ‘ = 35GeV

0<y <4.7
0<y2 <4.7

(cos 2¢) /{cos ) is much less sensitive to the PDFs than the cross section
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Comparison with NLO DGLAP for /s = 14 TeV

o (nb.Gev™2)
1000

0500
e e
0.100 = = “~
0,050 X .
-
0010 AN
0,005
. v Y
6 7 8 9 10 6 7 8 9 10
(cos 2¢) (cos 2¢) /(cos @)
08 08

dots: based on the NLO DGLAP parton generator Dijet (thanks to M. Fontannaz)
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Results: integrated kj at Tevatron (|ksi| > 20GeV, [kja| > 50GeV) +/s = 1.8 TeV

Comparison in the simplified NLL Green's function + LL jet vertices scenario

@ The integration f,:j ~ dky can be performed analytically

@ A comparison with the numerical integration based on code provides a
good test of stability, valid for large YV’

(cos ¢)
'R T ]
- x -
L + x .
08— x _]
i N ]
C - ]
0.6 — + x X —
C *
C N ]
0.4 — —
i N ]
C . ]
C . ]
02 — —
oL \ \ \ \ \ 11y
0 1 2 3 4 5 6
blue: LL
magenta: NLL Green’s function + LL jet vertices scenario Sabio Vera, Schwennsen
X: numerical dk; integration kj1 > 20 GeV and kjo > 50 GeV
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The specific case of QCD at large s

QCD in the perturbative Regge limit

@ Small values of aus (perturbation theory applies due to hard scales) can be
compensated by large In s enhancements. = resummation of
> .(as Ins)™ series (Balitski, Fadin, Kuraev, Lipatov)

T T ()

~ ~ s(aslns) ~ 5 (s Ins)?

@ this results in the effective BFKL ladder

" reggeon = "dressed gluon"

effective vertex

h1 ho— th 1 »(0)—1
ghihavanything _ Ly 4 ap(©)
S

with ap(0) —1=Cas (C >0) Leading Log Pomeron
Balitsky, Fadin, Kuraev, Lipatov
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Opening the boxes: Impact representation v* v* — * v* as an example

@ Sudakov decomposition: ki = a;p1 + Bip2 + kii (03 =p3 =0, 2p1 - p2 = s)
@ write d*k; = 5 do; dp; d*k1; (k= Eud + kL = Mink)

@ t—channel gluons have non-sense polarizations at large s: ¢%2/***™ = 2 p,

=setong =0and [df = & (ky, 1 — ky)
impact factor

: 2 27,/
M=o [ o -0 [ T ek, e k)

k‘/2
5+iood w -
w [ s ,
< [ ge(2) e
§—1i00

<— multi-Regge kinematics

= set B =0and [da, = cI>”'*_’A’*(7E717 -r+k,)
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Mueller-Navelet jets at LL fails

Mueller Navelet jets at LL BFKL

@ in LL BFKL (~ > (aslns)™),
emission between these jets
— strong decorrelation
between the relative azimuthal
angle jets, incompatible
with pp Tevatron collider data

@ a collinear treatment
at next-to-leading order
(NLO) can describe the data

@ important issue:
non-conservation
of energy-momentum
along the BFKL ladder.
A LL BFKL-based
Monte Carlo combined
with e-m conservation
improves dramatically
the situation (Orr and Stirling)

jety
collinear
parton
(PDF)
rapidity gap
LL BFKL
rapidity gap

Green function

collinear
arton

p
(PDF)
@ jet,

Multi-Regge kinematics
(LL BFKL)
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Studies at LHC: Mueller-Navelet jets

Mueller Navelet jets at NLL BFKL

@ up to now, the
subseries s Y (asIns)™
NLL was included
only in the exchanged
Pomeron state, and
not inside the jet vertices
Sabio Vera, Schwennsen
Marquet, Royon

collinear
parton
(PDF)

jet; NLL jet vertex

rapidity gap

NLL BFKL

rapidity gap .
& Green function

. collinear
@ the common belief parton

was that these corrections (PDF) jety NLL jet vertex
should not be important

Quasi Multi-Regge kinematics (here for NLL
BFKL)
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Master formulas

Angular coefficients

Co = /dquJl d¢ 2 cos (m(qu,l — ¢y — 77))
X /d2k1 d%ko ®(ky1, 271, —k1) G(k1, ko, 8) ®(kj2, z.72, ko).

@ m =0 = cross-section

do
dlks1|dlkyz2| dys1 dyse

=Co

@ m > 0 = azimuthal decorrelation

C’rn

(cos(mg)) = (cos (m(¢s1 — ds2 — 7)) = o
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Master formulas in conformal variables

Rely on LL BFKL eigenfunctions

@ LL BFKL eigenfunctions:
iv—1 in
Enu(ki) = =Lz (k3)"72 e
@ decompose P on this basis
@ use the known LL eigenvalue of the BFKL equation on this basis:

w(n,v) = @uyo (nl, 3 + i)

with xo(n,7) =20(1) =¥ (y+ 2) =¥ (1 -y + 2)
(¥(z) =T/ (x)/T(x), &s = Neas/m)

@ = master formula:

A\ w(m,v)
Cm = (4 — 36m70) /dl’ Cm,l/(|le‘7-77J,l) C'r*n,U(‘kJQ'va,Q) (;)
20

with C,,,,,V(|kJ|,xJ):/d¢,,kodxf(m)V(k,m)E,,,,y(k)cos(m¢,,)

@ at NLL, same master formula: just change w(m,v) and V
(although E., . are not anymore eigenfunctions)
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BFKL Green’s function at NLL

NLL Green's function: rely on LL BFKL eigenfunctions
@ NLL BFKL kernel is not conformal invariant
9 LL F,,, are not anymore eigenfunction

9 this can be overcome by considering the eigenvalue as an operator with a
part containing au

@ it acts on the impact factor

Inl, 2 +i
Xl n,2 v
71‘b0 1 . 8 Cny(|kJ1|,$Jl)

_ T - —21 In 2 AT 1)
2N, X <'”"2+’”){ MR N ol ere) S |

91y K1l '2|kJ2|
HRr

1
w(n,v) = asxo (|n| + w) + a2
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Collinear improvement at NLL

Collinear improved Green's function at NLL

@ one may improve the NLL BFKL kernel for n = 0 by imposing its
compatibility with DGLAP in the collinear limit
Salam; Ciafaloni, Colferai

@ usual (anti)collinear poles in v = 1/2 +4v (resp. 1 — ) are shifted by w/2
9 one practical implementation:
o the new kernel asx(V) (v, w) with shifted poles replaces

&SXO(’Y? 0) + 073)(1 (’Yv 0)

@ w(0,v) is obtained by solving the implicit equation

w(0,v) = aSX(l)('va(Ov v))
for w(n,v) numerically.

@ there is no need for any jet vertex improvement because of the absence of
~ and 1 —« poles (numerical proof using Cauchy theorem "backward")
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Jet vertex: LL versus NLL

k,k’ = Euclidian two dimensional vectors

LL jet vertex:

V x

NLL jet vertex:
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The LL impact factor

Vi (k,z) = b (k)S (k; )

. . (0) _ aS OA/F
with: hy’ (k) = N
xr
SP (k) =6 (1 - ?J) k|6 (k — k)
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NLL corrections to the jet vertex: the quark part (Bartels, Colferai, Vacca)

™ 18 =«

Cp 1— C
+/dz< F—z+—Af) Vi (1, w2)
™ 2 ™ 2

Ccy a2k 14 (1 —2)2 (k—K') (1-2k—-k) 3)
+T/T/dz[ 22 ((172)(1(—1(’)2((1—z)k—k’)Qhé)(k,)SJ O b= i)

3 k2 15\ C 85 2\ ¢ 5 N K2
v oy =|[(Zm= - 2)ZE L (24,7224 27 o | v, o)
q 2 A2 4 T 36 4 p2| 4

1
- 1(72(—)(1\2 - k’2)vq(°>(k, :cz)>

1
— o(k-k| - 2(k-K K ) v, k’,:]
kw2 (I | (I [+ 1 D) Vg ( )

Cp 1422 ;a1 NCp 3)
—= [d= P s 2k 4+ (1 —2)I, (1 —2)(k —1),z(1 — 2); 2
+ T — /w12[12+(17k)2( Pkt - 210 - 01,20 - 2)0)

+ 333)(1( — (=LA =)L e - 2);52))
2
—e ((1 f oha 12> (vq(o) (, 2) + V{0 zz))]

2Cp 1 421 NCp @ A2 2 (0 ]
- = z - | —= 5 k,z) — © —1°| v k,
7r d (172)/7r12 [12+(l—k)2 g e (1 - 2)2 a oo
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NLL corrections to the jet vertex: the gluon part (Bartels, Colferai, Vacca)

™ 36 w

1 C 1N K2 2 67\ C 13 N
—z4a -7 In — + oz —A+——ffbln— V(O)(kz)
A 0 }.L

N
+ /dz —fz—Fz(l - z)Vg(O) (k, xz)
™ A

N a2k’ 1 h(O () 1

! q Gk k — K mzw) — 2 _ 12y (0) (g,

+ / - /0 dz qu(z}[(k—k’)2+k’2 SJ (k' k — k' ,zz;x) k129(A k )Vq (k,ﬂz):|
Ny NC 4 (k — k') - K

(1 — 2k —1/)2 [2(1 BCEIEE

sPad k—k aza)

2m

- k%(—) (a2 (@ - ok - k)2 5P e, I)]

S+ -0 - H&-D. 21— 2)50)

Cu g1 dz a?1 NCy
+ =, 172[(172)13(172)]/_{712+(17k)2[

+8P a0, - L0 - o))

A2 2\ [ ©
_(—)((1_2)2 —1 ) [Vg (&, z) + v (k,:z)]}

204 2 NCy @) A2 5 ) ]
- —— 4 s Jz) —© - @
/ 1- = / 12 [12+(l—k)2 g Gem (1 - 2)2 ) Ve e

Cca rd?k 1 (k- k') - ((1 — 2)k — k) )
e e A e

x @ ad k-1 wzia) - 1(fze(A 1?0 i, zz))

1

~ Sa T Ok — K1 - =k D) VD o, z>]
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Jet vertex: jet algorithms

Jet algorithms

@ a jet algorithm should be IR safe, both for soft and collinear singularities
@ the most common jet algorithm are:

@ k¢ algorithms (IR safe but time consuming for multiple jets configurations)

o cone algorithm (not IR safe in general; can be made IR safe at NLO: Ellis,
Kunszt, Soper)
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Jet vertex: jet algorithms

Cone jet algorithm at NLO (Ellis, Kunszt, Soper)

@ Should partons (|p1], ¢1,y1) and (p2|, ¢2,y2) be combined in a single jet?
|p:| =transverse energy deposit in the calorimeter cell ¢ of parameter
Q= (yi,¢:) in y — ¢ plane
@ define transverse energy of the jet: p; = |p1| + |p2|
@ jet axis:
L= IP1ly1 + [p2|y2

pJ
Qe
_ Ipilé1 + [p2| 42

Py

¥

parton; (Q1, |p1l)

cone axis (Q¢) Q= (yi, ¢:) in y — ¢ plane
partong (QQ, |p2|)

If distances [ — Qc|® = (i — ye)® + (i — ¢c)? < R* (i =1 and i = 2)

— partons 1 and 2 are in the same cone 2,
Ip1] + |p2|

combined condition: [ — Q| < ——————
maz(|p1], [p2|)

57 /36



Jet vertex: LL versus NLL and jet algorithms

LL jet vertex and cone algorithm

k, k’ = Euclidian two dimensional vectors

b

SP(kyix) =6 (1 - ’;—J) k|6 (k — k)
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Jet vertex: LL versus NLL and jet algorithms

NLL jet vertex and cone algorithm
k, k’ = Euclidian two dimensional vectors

553’Ccme)(k'7 k -k, zz;2) =

(2) k—K'|+[K 2
S (kw)@([mmm] - [Ay2+A¢2]>

’ ’ 2
+ 8P (k—K,22) 0 <[Ay2 + 267] — | iy Reone| )

2 ’ kK |+]K/| 2
+ 8P, a(1-2)) @ ([Ay2 + 807 - [ Reone] ) ,
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Mueller-Navelet jets at NLL and finiteness

Using a IR safe jet algorithm, Mueller-Navelet jets at NLL are finite

@ UV sector:
o the NLL impact factor contains UV divergencies 1/¢

o they are absorbed by the renormalization of the coupling: ag — as(ur)

9 IR sector:
o PDF have IR collinear singularities: pole 1/e at LO

o these collinear singularities can be compensated by collinear singularities of
the two jets vertices and the real part of the BFKL kernel

@ the remaining collinear singularities compensate exactly among themselves

o soft singularities of the real and virtual BFKL kernel, and of the jets vertices
compensates among themselves

This was shown for both quark and gluon initiated vertices (Bartels, Colferai,
Vacca)
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LL substraction and sg
@ onesums up > (asIn§/so)" + as Y (s In§/s0)" (8§ =z1228)

9 at LL s¢ is arbitrary

@ natural choice: so = /50,1 50,2 So0,; for each of the scattering objects
o possible choice: sg; = (Jky| + |ks — k|)? (Bartels, Colferai, Vacca)

9 but depend on k, which is integrated over

@ §is not an external scale (x1,2 are integrated over)
2

o we prefer
x
50,0 = (kg1 + k1 —ka[)? = s, = lek?n
J1 K 3 TJ1Tg, S
T Lt A
2 50 so kgl kgl
2 / T2 1.2
50,2 = (|kJ2| + |kJ2 — k2|) — 80’2 = TkJQ
7,2 — UJ17YS2 = Y
9 sp — sy affects
o the BFKL NLL Green function
@ the impact factors:
’ 21/ / ’ 1. 80,
OniL(ki;sp ;) = PnoL(ki;so) + [ dk q)LL(ki)}CLL(kiyki)El -~ (1)
0,
@ numerical stability (non azimuthal averaging of LL substraction) improved
with the choice so,; = (ki — 2k;)?
(then replaced by Sg,i after numerical integration)
61/36
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Motivation for asymmetric configurations

@ Initial state radiation (unseen) produces divergencies if one touches the
collinear singularity q*> — 0

%7
ERRERS
q /
PJ2

@ they are compensated by virtual corrections

@ this compensation is in practice difficult to implement when for some
reason this additional emission is in a "corner” of the phase space (dip in
the differential cross-section)

@ this is the case when p1 +p2 — 0
@ this calls for a resummation of large remaing logs = Sudakov resummation
PJ1

e
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Motivation for asymmetric configurations

@ since these resummation have never been investigated in this context, one
should better avoid that region

@ note that for BFKL, due to additional emission between the two jets, one
may expect a less severe problem (at least a smearing in the dip region

[p1] ~ [p2])
PJ1

PJ2
@ this may however not mean that the region |p1| ~ |p2| is perfectly

trustable even in a BFKL type of treatment

@ we now investigate a region where NLL DGLAP is under control
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