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Motivation
Features of CCFM evolution equation
m interpolating framework for large to low x
m account for interference effects to LO approximations due
to color coherence (angular ordering)
m enables to match PDF with a hard process matrix element
given the scale of the last emission (better than BFKL)
m recently extended to non-linear equation — saturation (?)
The existing programs
m CASCADE (based on SMALLX)
m programs on the grid
Why a new Monte Carlo?
m fully exclusive (all partons’ four momenta)
m simulates complete CCFM as well as approximations
m cleaner environment (one evolution variable instead of the
interplay of two)
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Kinematics in initial state radiation

Ti+1 = Zi4+1%5

z — 0 hard emission; z — 1 soft emission
pr; — gl;ansverse momenta of emitted gluons
bi = 1—; )

qr, = lqr, — 23:1 ij|

— accumulated transverse momentum
angular ordering:

pF
2 = . .
pr, Ni < Ni+1

Dit1 > ziPi < In

@ Catani, Fiorani, Marchesini, Small-x behaviour of initial state
radiation in perturbative QCD, Nucl. Phys B336 1990.

@ Catani, Fiorani, Marchesini, QCD coherence in initial state radiation,
Phys. Letters B234 1990.
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Sketch of derivation

recursive relations for n-gluon amplitude F,, in terms of
Fn—1 by means of soft gluons insertions

Folz,qr,2z,p) = /dz/

imposing angular ordering; () - maximal allowed angle

X
(pa zp )P(z,p, qT)fnfl (;7Q%7Z,7pl)

Fol, a7, Q / / 8D & 2p) As(Q. 2p) Ful g 2. p)

@ Kwiecinski, Martin, Sutton, The gluon distribution at small x obtained
from a unified evolution equation, Phys.Rev. D52 (1995), 1445-1458
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CCFM equation

F $ qT: ZF €, QTa
iterative form convenient for a Monte Carlo implementation

F(z,qr,Q) = F(z0,qm,, Q0)As(Q, Q0)d(z — 20)3%(qr — q1y) + > As(Q, 2npn) X

n=1

dz; d? i
x H/ Wli (Q = znpn) As(piv1, 2ipi) P(2i, pi, priyy ) F (20, 410, Qo)

CCFM splitting function P(z,p,qr) = as e (% + w)

—z z

)
compare with DGLAP P(z) = aste ( L +l42(1-2)— 2)
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Sudakov form factor is given by

@ g2 [i-po/p d N,
As(q, zp) = exp (— / / - CaS)
p)? P —c

scale-dependent infrared cutoff

cutoff on the minimal angle

resums soft virtual corrections

Non-Sudakov

dz' ot dp?
Ans(p, 2,¢°) =eXp{ No—/ /2 Pr }
2! p

=ex { NC—ln—ln 2}
Tz zZpp
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Monte Carlo algorithm

m interpret evolution equation as a Markov chain in (7;, z;)
m use DGLAP evolution as a lighthouse...

m use Sudakow form factor as a probability distribution in
generating each emissions and as a correcting weight for the
last emission

m employ well-exercised methodology to include additional
effects (running ag) and improve efficiency

m ... and modify to account for CCFM properties

m generate full particles’ kinematics

m impose angular ordering of emissions

m include the non-Sudakov form factor as a correcting weight
for a “DGLAP-wise” generated distributions

@ Jadach et al., Constrained MC for QCD evolution with rapidity
ordering and minimum kr, CPC 180 (2009) 675-698.
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Monte Carlo algorithm

m keeping the constrain: 7; < n;11;7 = In 2 —,, n e [ln fgg% O]

m keeping real and virtual soft contributlons — cutoff on

minimal k7 = 1GeV
m 7);, z; are mapped into four-momenta of on-shell massless

gluons
Pjr = exp(—n;)V/s(zj-1 — 333)
5
pj = s(zjo1 —aj), p; = 2F,
J

83

m stopping rule In Qpaez = V/ s& =
&, p - max rapidity, angle in the CM system
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Results — comparison with DGLAP

[ D(x, 10g10(KT), Q=10GeV) [ D(x, 10g10(kT), Q=100GeV)
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DGLAP (dashed line) and CCFM (solid line) distributions.
Qmax = 10, 100

Initial condition: 1/k2.20.

x €[1,0.1) (black) and z € [1073,107%)
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Results — neglecting soft emissions

[ D(x, 10g10(kT), Q=10GeV) [ D(x, 10g10(kT), Q=100GeV)
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Complete CCFM distributions (solid line) with removed
Sudakov and 1/(1 — z)) (dashed line), constant ag.
Evolution time Q= 10 (left), 100 (right). Initial condition:
1/k2a0.
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Comparisons with other programs — underway

Different choices of the maximal scale
B g7 in Marchesini, Webber, NPB349(1991) 617-634
m maximal angle (CASCADE, Avsar, Stasto, JHEP06 (2010) 112)

evolution in rapidity, stopping rule in maximal angle

In order to make quantitative comparisons, a need to modify
stopping rule in the MC.

Problem for Monte Carlo! evolution scale not given a priori
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Conclusions

m We extended the scope of a program simulating DGLAP
evolution into CCFM

m The program models a complete CCFM evolution

m Obtained a qualitatively good description of kp
distributions

m Comparisons with other programs, simulating data
reaquires translating a stopping rule into maximal angle
(underway).
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