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Motivation
Features of CCFM evolution equation

interpolating framework for large to low x

account for interference effects to LO approximations due
to color coherence (angular ordering)
enables to match PDF with a hard process matrix element
given the scale of the last emission (better than BFKL)
recently extended to non-linear equation → saturation (?)

The existing programs
CASCADE (based on SMALLX)
programs on the grid

Why a new Monte Carlo?
fully exclusive (all partons’ four momenta)
simulates complete CCFM as well as approximations
cleaner environment (one evolution variable instead of the
interplay of two)
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Kinematics in initial state radiation
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xi+1 = zi+1xi
z → 0 hard emission; z → 1 soft emission
pTi – transverse momenta of emitted gluons
p̃i =

pTi
1−zi

qTi = |qT0 −
Pi
j=1 pTj |

– accumulated transverse momentum
angular ordering:

p̃i+1 ≥ zip̃i ⇔ ln
p+i
pTi
≡ ηi < ηi+1

Catani, Fiorani, Marchesini, Small-x behaviour of initial state
radiation in perturbative QCD, Nucl. Phys B336 1990.

Catani, Fiorani, Marchesini, QCD coherence in initial state radiation,
Phys. Letters B234 1990.
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Sketch of derivation

1 recursive relations for n-gluon amplitude Fn in terms of
Fn−1 by means of soft gluons insertions

Fn(x, qT , z, p) =
∫
dz′
∫

d2p′

πp′2
∆S(p, z′p′)P (z, p, qT )Fn−1

(x
z
, q′T , z

′, p′
)

2 imposing angular ordering; Q - maximal allowed angle

Fn(x, qT , Q) =
∫ 1

x
dz

∫
d2p

πp2
Θ(Q−zp)∆S(Q, zp)Fn(x, qT , z, p)

Kwiecinski, Martin, Sutton, The gluon distribution at small x obtained
from a unified evolution equation, Phys.Rev. D52 (1995), 1445-1458
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CCFM equation

F (x, qT , Q) =
∞∑

n=0

Fn(x, qT , Q),

iterative form convenient for a Monte Carlo implementation

F (x, qT , Q) = F (x0, qT0 , Q0)∆S(Q,Q0)δ(x− x0)δ2(qT − qT0) +
∞X
n=1

∆S(Q, znpn)×

×
nY
i=1

Z
dzi
zi

Z
d2pi
πp2

i

Θ(Q− znpn)∆S(pi+1, zipi)P (zi, pi, pTi+1)F (x0, qT0 , Q0)

CCFM splitting function P (z, p, qT ) = αS
NC
π

“
1

1−z + ∆NS(p,z,qT )
z

”
compare with DGLAP P (z) = αS

NC
π

“
1

1−z + 1
z

+ z(1− z)− 2
”
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Sudakov form factor is given by

∆S(q, zp̄) = exp
(
−
∫ q2

(zp̄)2

dp̃2

p̃2

∫ 1−p0/p

0

dz

1− z
NCαS

π

)
scale-dependent infrared cutoff

cutoff on the minimal angle

resums soft virtual corrections

Non-Sudakov

∆NS(p, z, q2) = exp
{
−NC

αS

π

∫ 1

z

dz′

z′

∫ q2
T

z′2p2
T

dp2
T

p2
T

}
= exp

{
−NC

αS

π
ln

1
z

ln
q2
T

zp2
T

}
,
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Monte Carlo algorithm

interpret evolution equation as a Markov chain in (ηi, xi)
use DGLAP evolution as a lighthouse...

use Sudakow form factor as a probability distribution in
generating each emissions and as a correcting weight for the
last emission
employ well-exercised methodology to include additional
effects (running αS) and improve efficiency

... and modify to account for CCFM properties
generate full particles’ kinematics
impose angular ordering of emissions
include the non-Sudakov form factor as a correcting weight
for a “DGLAP-wise” generated distributions

Jadach et al., Constrained MC for QCD evolution with rapidity
ordering and minimum kT , CPC 180 (2009) 675-698.
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Monte Carlo algorithm

keeping the constrain: ηi < ηi+1; η = ln p+
i

p−i
, η ∈

[
ln 2Ex0

ΛQCD
, 0
]

keeping real and virtual soft contributions → cutoff on
minimal kT = 1GeV
ηi, xi are mapped into four-momenta of on-shell massless
gluons
pjT = exp(−ηj)

√
s(xj−1 − xj),

p+
j =
√
s(xj−1 − xj), p−j =

p2
jT

p+
j

,

stopping rule lnQmax =
√
sξ̄ = p̄

x
ξ̄, p̄ - max rapidity, angle in the CM system
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Results – comparison with DGLAP
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Results – neglecting soft emissions

log10(kT)
-1.5 -1 -0.5 0 0.5 1 1.5 2 2.5 3

-410

-310

-210

-110

1

10

210

310

410
final x 

 [10^ -0, 10^ -1)∈x 

 [10^ -3, 10^ -4)∈x 

D(x, log10(kT), Q=10GeV)

log10(kT)
-1.5 -1 -0.5 0 0.5 1 1.5 2 2.5 3

-410

-310

-210

-110

1

10

210

310

final x 

 [10^ -0, 10^ -1)∈x 

 [10^ -3, 10^ -4)∈x 

D(x, log10(kT), Q=100GeV)

Complete CCFM distributions (solid line) with removed
Sudakov and 1/(1− z)) (dashed line), constant αS .
Evolution time Q= 10 (left), 100 (right). Initial condition:
1/k2

Tx
0.

10 / 12



Comparisons with other programs – underway

Different choices of the maximal scale
qT in Marchesini, Webber, NPB349(1991) 617-634

maximal angle (CASCADE, Avsar, Stasto, JHEP06 (2010) 112)
evolution in rapidity, stopping rule in maximal angle
In order to make quantitative comparisons, a need to modify
stopping rule in the MC.
Problem for Monte Carlo! evolution scale not given a priori
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Conclusions

We extended the scope of a program simulating DGLAP
evolution into CCFM
The program models a complete CCFM evolution
Obtained a qualitatively good description of kT

distributions
Comparisons with other programs, simulating data
reaquires translating a stopping rule into maximal angle
(underway).
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