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Motivation

• Off-shell amplitudes appear in kT (or TMD – transverse-momentum
dependent) factorization

• For on-shell tree-level amplitudes there are plenty of efficient tools (based on
helicity method), this is not the case for off-shell ones

• One-leg off-shell amplitudes can be used in forward-central jets studies (see
Krzysztof’s Kutak talk on Monday)

• Two-leg off-shell amplitudes – see today’s talk of Andreas van Hameren



Outline

• High-energy factorization

• Catani-Ciafaloni-Hautmann factorization approach
• multiple gluonic final states

• Helicity method vs off-shell amplitudes

• “Gauge-restoring” amplitude

• the Slavnov-Taylor identities
• some less commonly used gauge issues

• Summary



High-energy factorization

CCH (Catani, Ciafaloni, Hautmann) factorization1

The CCH was originally stated for heavy quarks production in photo-, lepto- and hadro-production.
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At high energies the single longitudinal compo-
nents of momentum transfers dominate

k µA ≃ zA pµA + k µT A , k µB ≃ zB pµB + k µT B .

It is then argued that

dσAB→QQ ≃
∫

d2kT A

∫
dzA

zA

∫
d2kT B

∫
dzB

zB

F (zA , kT A ) dσg∗g∗→QQ (zA , zB , kT A , kT B )F (zB , kT B ),

where F are unintegrated gluon structure functions undergo-
ing BFKL evolution. The hard process dσg∗g∗→QQ is calculated
by contracting an off-shell amplitude (including external off-shell
propagators) with pA , pB :

where
= |~kT A|p

µ
A

= |~kT B|p
µ
B

It can be shown that dσg∗g∗→QQ is gauge invariant.

Further, we consider only tree level hard processes and asymmetric on-shell–off-shell kinematics with

k µA ≃ zA pµA + k µT A , k µB ≃ zB pµB .

1 S. Catani, M. Ciafaloni, F. Hautmann (1990), (1991), (1994)



High-energy factorization (cont.)

More gluons: collinear factorization

HARD

...

More gluons: TMD factorization

+ . . .+ HARD

· · ·

HARD

...
...

Two standard approaches to HARD

• Consider an on-shell process with hadron replaced by a quark and eventually perform the high-energy limit.
In the axial gauge with the gauge vector pA the following structure emerges

HARD+ . . .++ HARDHARD

. . .

...
...

⇒ the bremsstrahlung diagrams are necessary in order to maintain gauge invariance.

• Use Lipatov’s effective action and resulting Feynman rules1.
An off-shell gluon contracted with eikonal vector ≡ reggeon (R),
⇒ R → particles effective vertex

Is there an alternative which is efficient for multiple final states?

1 E. Antonov, L. Lipatov, E. Kuraev, I. Cherednikov (2005)



Off-shell amplitudes and helicity method

In what follows, we concentrate on purely gluonic amplitudes (quarks are also easily included).

Helicity method for on-shell amplitudes

• uses the spinor representation for polarization vectors of gluons

For a gluon with momentum k the polarization vector is defined with the help of a reference vector q, εµk (q).

• the gauge invariance is crucial

Change of the reference momentum q → q′ amounts for
the transformation

ε
µ
k (q) = ε

µ
k (q

′) + k µβk (q,q
′).

We can adjust q freely due to the Ward identity

... = 0
where

= kµ

• proper choice of q renders rather compact expressions for helicity amplitudes, which can be squared and
summed numerically

The off-shell amplitude (without
bremsstrahlung contributions) is not
gauge invariant:

... 6= 0

kA

Let us denote our off-shell amplitude asM (εB , ε1 . . . , εN).

There exists an “amplitude”W (εB , ε1, . . . , εN) such that

M̃ (εB , ε1, . . . , εN) =M (εB , ε1, . . . , εN) +W (εB , ε1, . . . , εN)

satisfies
M̃ (εB , ε1, . . . , ki , . . . , εN) = 0.



Gauge-restoring amplitude

Reduction formula for CCH factorization

The high-energy amplitude with the proper kinematics can be implemented via

M (εB , ε1, . . . , εN) = lim
kA ·pA→0

lim
k2
B→0

lim
k2
1
→0
. . . lim

k2
N→0

(∣∣∣∣~kA

∣∣∣∣ pµAA

) (
k 2

Bε
µ1
B

) (
k 2

1 ε
µ1
1

)
. . .

(
k 2

Nε
µN
N

)
G̃µA µB µ1 ...µN (kA , kB , k1, . . . , kN),

where G̃ is the momentum-space Green function.

Slavnov-Taylor (S-T) identity

We apply the S-T identity to G̃:

... =
...

......
... + . . .+ + +

After applying the reduction formula most of the terms vanish, except one

... = ...

The r.h.s term is precisely the amount of gauge-invariance
violation and can be calculated (note however, this is not
the “gauge-restoring” amplitude yet, as it contains the ex-
ternal ghost line).



Gauge-restoring amplitude (cont.)

Remarks concerning gauges and ghosts

• It is allowed to use two different gauges for on-shell lines and internal off-shell lines.

• Ghosts do exist in the axial gauge (but usually decouple)1

A ghost-gluon coupling in the axial gauge is = ig fabcn
µ, where n is a gauge vector.

• Usually, when squaring an amplitude one uses sum over physical gluon polarization

∑

λ

ε
(λ) µ
k (q) ε(λ) ν ∗k (q) = −gµν +

qµk ν + qνk µ

q · k ,

with some light-like momentum q.

Alternatively, one can use external gluons in the Feynman gauge
and cut ghost loops.

−→

• The last remark allows us to trade an external ghost with momentum k to a gluon projected onto some
light-like momentum q

external ghost → εk · q
k · q

1 e.g. G. Leibrandt, Rev. Mod. Phys. (1987)



Gauge-restoring amplitude (cont.)

It turns out that the gauge-restoring amplitude can be easily obtained by using axial gauge with gauge vector pA and
summing all the gauge contributions with proper replacements of external ghosts.

For instance, for a fixed color ordering (A ,B, 1, . . . ,N) the sum collapses into a single term

Word (εB , ε1, . . . , εN) = −
(
−g
√

2

)N
∣∣∣∣~kT A

∣∣∣∣ εB · pA ε1 · pA . . . εN · pA

kB · pA (kB − k1) · pA . . . (kB − . . . − kN−1) · pA

• Those amplitudes correspond to bremsstrahlung diagrams in “embedding approach”.

• The full gauge invariant amplitude M̃ =M+W does satisfy ordinary collinear and soft behaviour

• It corresponds to Lipatov’s R → (N + 1)G effective vertex

• If we choose the reference momentum for polarization vector of any of the external gluons to be pA the
amplitudeW vanishes due to the property of polarization vectors εk (q) · q = 0.

• We have explicit analytical expressions for helicity amplitudes for G∗G → GG, G∗G → GGG, G∗G → GQQ

• Approach tested numerically up to N = 10



Summary

• Our task – develop some methods/tools for efficient calculations of
multi-partonic tree-level amplitudes relevant for high-energy factorization

• First step – one-leg off-shell amplitudes

• We have reconstructed a gauge-restoring contribution using just the
Slavnov-Taylor identities

• The gauge-restoring amplitude allows for using the helicity method and
existing tools for matrix elements


