Inclusive diffraction at HERA

- Selection of diffractive events
- Diffractive parton distribution functions
- Tests of QCD factorisation
- First combination of the H1 and ZEUS diffractive data (proton tag)
- Precision Large Rapidity Gap cross sections
- Pomeron trajectory
- F, D measurement
- Conclusions

HERA

$$E_{\rm e} = 27.6 \, {\rm GeV}$$

$$E_p = 920 - 460 \text{ GeV}$$

- HERA operated in 1992-2007, colliding electrons or positrons at 27.5 GeV with protons
- Nominal proton beam energy :

$$E_p$$
 = 820 / 920 GeV
 \sqrt{S} = 300 / 318 GeV, (HERA- I phase)
 E_p = 920 GeV
 \sqrt{S} = 318 GeV, (HERA- II phase)

Reduced proton beam energy :

$$E_p = 460 \text{ GeV}, \ \sqrt{S} = 225 \text{ GeV}$$

 $E_p = 575 \text{ GeV}, \ \sqrt{S} = 250 \text{ GeV}$

Low energy data \rightarrow measurements of the longitudinal proton structure functions F_L and $F_L{}^D$

Deep inelastic ep scattering

Diffractive DIS

Surprise of HERA

expectation before HERA ~ 0.01%

~10% of DIS events at HERA have no activity in the forward direction (Large Rapidity Gap)

→ exchange of a colourless object, called Pomeron (IP)

Standard DIS variables:

Q² virtuality of the exchanged boson

x in QPM fraction of protonmomentum carried by struck quark

 $y = Q^2 / xs$ inelasticity

Additional variables for DDIS:

X_{IP} p-momentum fraction carried by IP

β IP-momentum fraction carried by struck quark

t squared 4-momentum transfer at proton vertex

Selection of diffractive events

ZEUS Leading Proton Spectrometer

Proton spectrometers:

- detection of elastically scattered protons
- low geometrical acceptance → less statistics
- direct measurement of t, x_{IP}
- high x_{IP} accessible

Large Rapidity Gap:

- high acceptance → more statistics
- integration over |t| < 1 GeV²
- background from proton dissociation into low mass N*
- The 2 methods have different kinematical coverage, very different systematics

Infinite momentum frame: diffractive structure function approach

QCD hard scattering collinear factorisation at fixed x_{IP} and t (proven by Collins 1998):

$$d\sigma^{ep \to eXp}(\beta, Q^2, x_{IP}, t) = \Sigma f_i^{D}(\beta, Q^2, x_{IP}, t) \otimes d\sigma^{ei}(\beta, Q^2)$$

f_i^D – diffractive PDFs (DPDFs), DGLAP evolution in Q²

Proton vertex factorisation: separate (x_{IP}, t) from (β, Q^2) dependences

$$f_{i}^{D}(\beta, Q^{2}, x_{IP}, t) = f_{IP/p}(x_{IP}, t) \cdot F_{i}^{IP}(\beta, Q^{2})$$

No QCD basis, consistent with experimental data

Pomeron flux (Regge form)

Pomeron structure function

Proton rest frame: dipole approach

- The virtual photon fluctuates into a colour singlet qq pair (called dipole)
 - transverse size of the dipole r ~ 1/Q
 - contribution of qq- g dipoles at low β
- The long living dipole interacts with the gluons from the proton

$$d\sigma_{diff}^{\gamma^* p}/dt \propto \int dz dr^2 \Psi^* \sigma_{qq}^2(x, r^2, t) \Psi$$

 $\Psi : \gamma^* \rightarrow q\overline{q}$ wavefunction

 σ_{qq} : dipole-proton cross section

- Direct relation to inclusive DIS
 (the same dipole scattering amplitudes applied for inclusive and diffractive cross sections)
- Dipole approach incorporates saturation dynamics (pioneering work of K. Golec-Biernat & M. Wüsthoff, 1999)

Diffractive parton densities (DPDFs)

H1 2006 DPDF fit B

- Diffractive PDFs obtained through NLO DGLAP QCD fit to data
 - inclusive DDIS cross section → diffractive gluon density weakly constrained at high z_{IP}
 - combined fit to diffractive inclusive and dijet cross sections
 - → comparable precision of quark and gluon densities for all z_{IP}

 z_{IP} = momentum fraction parton / IP

Diffractive scattering is dominated by gluons

(about 60% of exchanged momentum, extending to large z)

Test of QCD factorisation

Diffractive dijets in DIS

- NLO QCD + ZEUS DPDF SJ remarkably good description of the dijet data
- QCD factorisation holds
- precision limited by theory scale uncertainty

Nucl. Phys. B831 (2010) 1

Dijets in DDIS with a leading proton - proton vertex factorisation

 $4 < Q^2 < 110 \text{ GeV}^2$, 0.05 < y < 0.7, $x_{IP} < 0.1$, $ItI < 1 \text{ GeV}^2$

Eur. Phys. J. C72 (2012) 1970

pt of jets in hcms $p_{T,1}^* > 5$ GeV, $p_{T,2}^* > 4$ GeV, -1 < $\eta_{1,2} < 2.5$

Regge motivated fit exp(Bt)

$$\rightarrow$$
 B = 5.89 ± 0.50 GeV⁻²

t slope consistent with the value measured in inclusive diffractive DIS with a leading proton in the final state

Confirmation of the proton vertex factorisation hypothesis for diffractive dijet production

Dijets in diffractive DIS with a leading proton

one central + one forward jet

 $4 < Q^2 < 110 \text{ GeV}^2$, 0.05 < y < 0.7, $x_{IP} < 0.1$, $ItI < 1 \text{ GeV}^2$

 $p_{T,c}{}^*, p_{T,f}{}^* > 3.5 \; \text{GeV}, \;\; M_{jj} > 12 \; \text{GeV}, \; \text{-1} < \eta_c < 2.5, \; 1 < \eta_f < 2.8, \; \eta_f > \eta_c$

search for physics beyond DGLAP

DPDF + NLO QCD works well

No sign for deviations from DGLAP

Eur. Phys. J. C72 (2012) 1970

Comparison of the fit

ZEUS DPDF SJ and H1 2006 DPDF Fit B to

the ZEUS LRG data

Differential cross section:

$$\frac{d\sigma^{ep\to eXp}}{d\beta dQ^2 dx_{I\!\!P}} \ = \ \frac{2\pi\alpha^2}{\beta Q^4} \bigg[1 + (1-y)^2 \bigg] \sigma_r^{D(3)}(\beta,Q^2,x_{I\!\!P})$$

Diffr. reduced cross section (related to structure functions)

$$\sigma_{\rm r}^{{\rm D}(3)} = {\rm F}_2^{{\rm D}(3)} - \frac{{\rm y}^2}{1 + (1 - {\rm y})^2} {\rm F}_{\rm L}^{{\rm D}(3)}$$

For β < 0.2, ZEUS and H1 fits agree in shape, but show some difference in the normalisation.

At higher β and where the predictions are extrapolated the agreement worsens.

 $x_{10} = 0.003$

Nucl. Phys. B831 (2010) 1

Combination of proton tagged data

First combined H1 (FPS & VFPS) and ZEUS (LPS) data

$$2.5 < Q^2 < 200 \text{ GeV}^2$$
, $0.00035 < x_{IP} < 0.09$,

 $0.09 < \text{ItI} < 0.55 \text{ GeV}^2$, $0.0018 < \beta < 0.816$

Combination includes correlations of systematic uncertainties

profits from different detectors (systematics)

cross calibration reduces uncertainties significantly (total uncertainty on the x-sec is 6% for the most precise points)

Scaling violation clearly visible

Most precise determination of the absolute normalisation of the $ep \rightarrow eXp$ cross section

Eur. Phys. J. C72 (2012) 2175

Diffraction with Large Rapidity Gap

 New H1 data sets combined with previously published data
 35 x more data @ medium Q²

[Eur. Phys. J. C72 (2012) 2074]

Kinematical coverage:

$$3.5 < Q^2 < 1600 \text{ GeV}^2$$

 $0.0017 < \beta < 0.8$
 0.0003 , $x_{\text{IP}} < 0.03$

 Ratio of the LRG and the proton spectrometer results quantifies the contribution of the proton dissociation in LRG

$$\frac{LRG}{FPS}$$
 = 1.203 ± 0.019(exp) ± 0.087(norm)

LRG and FPS data agree well NLO QCD (DPDF) does well for $Q^2 > 10 \text{ GeV}^2$

Diffraction with Large Rapidity Gap

- Good agreement between H1 and ZEUS data in general
- ~10% normalisation difference (within the uncertainties)

NLO QCD + DPDF:

- problems at low Q²
- good for $Q^2 > 10 \text{ GeV}^2$

Dipole model with saturation:

- good at low Q²
- too low at high Q^2 and β

Eur. Phys. J. C72 (2012) 2074

Dipole model:

C. Marquet, arXiv:0706.2682

Evidence of higher twist effects in DDIS

L. Motyka, L. Sadzikowski, W. Slominski, arXiv: 1203.5461

Standard twist-2 DGLAP description of the DDIS cross section fails below $Q^2 < 5 \text{ GeV}^2$

Nucl. Phys. B816 (2009) 1

HT contributions from Marquer -Munier & Shoshi saturation model

Inclusion of twist 4 and 6 to the DGLAP fit – good description of the data at low Q²

Pomeron trajectory

Regge fit to LRG cross section

$$f_{\mathbb{I}P/p,\mathbb{I}R/p}(x_{\mathbb{I}P}) = \int_{t_{cut}}^{t_{min}} \frac{e^{B_{\mathbb{I}P,\mathbb{I}R}t}}{x_{\mathbb{I}P}^{2\alpha_{\mathbb{I}P,\mathbb{I}R}(t)-1}} dt$$

$$\alpha_{I\!\!P,I\!\!R}(t) = \alpha_{I\!\!P,I\!\!R}(0) + \alpha_{I\!\!P,I\!\!R}'t$$

Mean value of the Pomeron intercept:

$$\alpha_{\mathbb{P}}(0) = 1.113 \pm 0.002 \text{ (exp.)} ^{+0.029}_{-0.015} \text{ (model)}$$

Pomeron intercept :

Independent of Q²
 (within the statistical uncertainties)
 In agreement with the dominance of non-perturbative effects in the IP structure function

Supports the proton vertex factorisation

measurements

Diffractive longitudinal structure function F_L^D

- FLD is sensitive to gluons and provides an independent test of QCD factorization.
- The FLD and F2D structure functions can be separated only by combining measurements at different y (for fixed x_{IP} , β , Q^2).

$$\sigma_r^D = F_2^D - \frac{y^2}{Y_+} F_L^D \qquad Y_+ = 1 + (1 - y)^2$$

$$Q^2 = x_{IP} \beta y s$$

- Highest sensitivity to FLD is at high y (low β).
- Challenging measurement due to high level of photoproduction background.

E_p = 460 GeV

F_i in diffraction

Eur. Phys. J. C72 (2012) 1836

Direct mesurement of F₂^D and F_L^D (no assumptions)

F_L^D measurements compared with leading twist predictions (NLO QCD + H1 DPDF) and with the model including a higher twist contribution derived from a colour dipole approach (Golec-Biernat & Luszczak)

H1 Collaboration

Ratio R^D of cross sections for longitudinally to transversly polarised photons:

$$R^{D} = F_{L}^{D} / (F_{2}^{D} - F_{L}^{D})$$

At Q^2 = 11.5 GeV² longitudinally and transversly polarized photon cross-sections are of the same magnitude ($R_D \sim 1$ and $F_2^D \sim 2F_L^D$)

Summary

- HERA observed hard diffraction in ep DIS
- First combination of the H1 and ZEUS diffractive data (proton-tag results)
- H1 precision LRG measurement using the full dataset
- The first direct measurement of F_L^D
- HERA measurements support the proton vertex and QCD factorisation

backup

Dijets in photoproduction – breaking of QCD factoristaion?

 $\gamma^* p$, $Q^2 \rightarrow 0$, direct and resolved photoproduction

hadron-like component in resolved γ^*p : photon fluctuates into hadronic system taking part in hard scattering ($x_{\gamma} < 0.2$)

 X_{γ} – fraction of photon's momentum in hard subprocess

Factorisation breaking observed by H1, two analyses, EPJC C51 (2007),549, – suppression ~ 0.5 EPJ C68 (2010),381 – suppression ~ 0.6

not observed by ZEUS, Nucl. Phys. B381 (2010) - no suppression ~ 1.

Diffractive forward jets

search for physics beyond DGLAP

one central + one forward jet

 $4 < Q^2 < 110 \text{ GeV}^2$, 0.05 < y < 0.7, $x_{IP} < 0.1$, $Itl < 1 \text{ GeV}^2$

$$p_{T,c}{}^*, p_{T,f}{}^* > 3.5 \; \text{GeV}, \;\; M_{jj} > 12 \; \text{GeV}, \; \text{-1} < \eta_c < 2.5, \; 1 < \eta_f < 2.8, \; \eta_f > \eta_c$$

No sign for deviations from DGLAP.

The shapes of measured distributions well described only by the Resolved IP model. (too low in normalisation)

Diffractive final states

Resolved Pomeron model (Ingelman & Schlein) based on QCD and proton vertex factorisation.

(RAPGAP generator, IP + Reggeon trajectories, DPDF H1 2006 Fit B)

2 Gluon Pomeron model (J. Bartels et al.)

Interaction of IP modeled as colourless pair of gluons with q\(\bar{q}\) or q\(\bar{q}\)g configurations emerging from the photon.

(RAPGAP, unintegrated PDF – set A0)

Soft Colour Interaction (SCI)

(Edin, Ingelman & Rathsman)

Non-diffractive DIS with subsequent colour rearrangement between the partons in the final state.

Suppression of long strings (SCI + GAL)

(LEPTO generator, PDF CTEQ6L)

QCD dynamics at low Bjorken-x

HERA : DIS at low Bjorken-x down to 10^{-5} \rightarrow energy in γ^*p cms is large ($W_{\gamma^*p} \approx Q^2 / x$)

- long gluon cascades exchanged between the proton and the photon
- pQCD multiparton emissions described only with approximations :

- DGLAP evolution: resums terms $\sim (\alpha_S \ln Q^2)^n$ Assumes strong ordering of parton k_T
- BFKL evolution: resums terms ~ (α_S In(1/x))ⁿ
 No ordering in k_T, strong ordering in x_i
 Transition from DGLAP to BFKL scheme expected at low x
- CCFM evolution: emitted partons are ordered in angles reproduces DGLAP at large x and BFKL at $x \rightarrow 0$

Search at HERA for effects of parton dynamics beyond the standard DGLAP approach

- Strong rise of the proton structure function $F_2(x, Q^2)$ with decreasing x
 - well described by NLO DGLAP over a large range of Q²
 - F₂ measurement too inclusive to discriminate between different QCD evolution schemes
- Look at hadronic final states reflecting kinematics, structure of gluon emissions