Upgrade of the CMS Tracker

Katja Klein
1. Physikalisches Institut B
RWTH Aachen University

2013 EPS Conference on High Energy Physics, Stockholm, Sweden
19th of July, 2013
The CMS Tracker Upgrade: Overview

<table>
<thead>
<tr>
<th>Year</th>
<th>Event</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2013</td>
<td>Long Shutdown 1</td>
<td>Preparation for phase-1
• Consolidation: Improvement of tracker thermal insulation
• New beam pipe
• Installation of pixel test slice</td>
</tr>
<tr>
<td>2015</td>
<td>Data taking</td>
<td>Installation of new CMS phase-1 pixel detector</td>
</tr>
<tr>
<td>2016</td>
<td>Technical stop</td>
<td>"Phase-1"</td>
</tr>
</tbody>
</table>
| 2017 | LS1 | "Phase-1"
Data taking
≈ 500 fb⁻¹
Exchange of innermost pixel layer after ~ 250fb⁻¹ |
| 2018 | LS2 | |
| 2019 | Data taking | Installation of a new CMS tracker
"Phase-2"
≈ 3000 fb⁻¹
• Phase-2 pixel detector
• Phase-2 outer tracker
• Track trigger |
| 2020 | Data taking | "Phase-2"
≈ 3000 fb⁻¹ |
| 2021 | | |
| 2022 | LS3 | |
| 2023 | | |
| 2024 | | |

Klein Katja
Upgrade of the CMS Tracker
The CMS Tracker Upgrade: Overview

<table>
<thead>
<tr>
<th>Year</th>
<th>Event</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>2013</td>
<td>Long Shutdown 1</td>
<td>Consolidation: Improvement of tracker thermal insulation</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• New beam pipe</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Installation of pixel test slice</td>
</tr>
<tr>
<td></td>
<td></td>
<td>} preparation for phase-1</td>
</tr>
<tr>
<td>2014</td>
<td>Data taking</td>
<td></td>
</tr>
<tr>
<td>2015</td>
<td>Data taking</td>
<td></td>
</tr>
<tr>
<td>2016</td>
<td>Technical stop</td>
<td>Installation of new CMS phase-1 pixel detector</td>
</tr>
<tr>
<td>2017</td>
<td>“Phase-1”</td>
<td></td>
</tr>
<tr>
<td>2018</td>
<td>LS2</td>
<td></td>
</tr>
<tr>
<td>2019</td>
<td>Data taking</td>
<td>Exchange of innermost pixel layer after ~ 250 fb$^{-1}$</td>
</tr>
<tr>
<td></td>
<td>“Phase-1”</td>
<td>≈ 500 fb$^{-1}$</td>
</tr>
<tr>
<td>2020</td>
<td>Data taking</td>
<td></td>
</tr>
<tr>
<td></td>
<td>“Phase-1”</td>
<td>≈ 3000 fb$^{-1}$</td>
</tr>
<tr>
<td>2021</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2022</td>
<td>LS3</td>
<td>Installation of a new CMS tracker</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Phase-2 pixel detector</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Phase-2 outer tracker</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Track trigger</td>
</tr>
<tr>
<td>2023</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2024</td>
<td>Data taking</td>
<td>Red = covered in this presentation</td>
</tr>
<tr>
<td></td>
<td>“Phase-2”</td>
<td>≈ 3000 fb$^{-1}$</td>
</tr>
</tbody>
</table>

Red = covered in this presentation
• Present pixel detector was designed for $1 \cdot 10^{34} \text{ cm}^{-2}\text{s}^{-1} @ 25\text{ns}$ bunch spacing

• Conditions at LHC Phase-1: $2 \cdot 10^{34} \text{ cm}^{-2}\text{s}^{-1} @ 25$ or 50ns → 50 or 100 pile-up events; int. luminosity of 500 fb$^{-1}$ and hit rates of $\approx 600 \text{ MHz/cm}^2$ → data losses of up to 50%

→ “Evolutionary upgrade“ with minimal impact on data taking
The Phase-1 Pixel Upgrade

- Present pixel detector was designed for $1 \cdot 10^{34}$ cm$^{-2}$s$^{-1}$ @ 25ns bunch spacing
- Conditions at LHC Phase-1: $2 \cdot 10^{34}$ cm$^{-2}$s$^{-1}$ @ 25 or 50ns → 50 or 100 pile-up events; int. luminosity of 500 fb$^{-1}$ and hit rates of ≈ 600 MHz/cm2 → data losses of up to 50%

→ “Evolutionary upgrade“ with minimal impact on data taking

- 4 hit coverage → robust tracking
- Smaller radius of innermost layer → better vertex resolution & b-tagging efficiency
- Improved readout chip → recovery of hit efficiency
- Evaporative CO$_2$ cooling, relocation of patch panels, lighter mechanics → less material
- Novel powering scheme allows to power factor of 1.9 more channels
Simulated Performance

Tracking efficiency

- Efficiency vs. η
- Current Pixel Detector: ± 0.5 efficiency drop
- Upgrade Pixel Detector: ± 0.3 efficiency drop

Fake rate

- 2×10^{34} cm$^{-2}$s$^{-1}$ (25 ns)
- ttbar sample
- 50 pileup events

Material budget

- Radiation length
- Current pixel detector: ± 0.1 deviation
- Upgrade pixel detector: ± 0.2 deviation

B-tagging efficiency vs. pile-up

- Efficiency (%) vs. average pileup
- Current Detector: light quark mis-tag = 1%
- Upgrade Detector: light quark mis-tag = 0.1%
Pixel Modules

Layers 2-4

Layer 1
M = 1.6 g
0.74% of rad. length
Pixel Modules

Layers 2-4

Layer 1
M = 1.6 g
0.74% of rad. length

Si$_3$N$_4$ base-strips, 250µm thick or carbon fiber clip (L1)
Pixel Modules

Layers 2-4
- M = 1.6 g
- 0.74% of rad. length

Layer 1
- M = 1.6 g
- 0.74% of rad. length

16 readout chips (ROCs)
- Bump-bonded to sensor
- Thinned to 180µm & 75µm (L1)

Si$_3$N$_4$ base-strips, 250µm thick
- or carbon fiber clip (L1)
Pixel Modules

Layers 2-4

- **n+-in-n silicon sensor (as today)**
 - Active area: 16.2×64.8 mm²
 - 100μm x 150μm pixels
 - 66,560 pixels per sensor

- **16 readout chips (ROCs)**
 - Bump-bonded to sensor
 - Thinned to 180μm & 75μm (L1)

- **Si₃N₄ base-strips, 250μm thick or carbon fiber clip (L1)**

Layer 1

- **M = 1.6 g**
- **0.74% of rad. length**
Pixel Modules

Layers 2-4

- n+-in-n silicon sensor (as today)
 - Active area: 16.2 x 64.8 mm²
 - 100µm x 150µm pixels
 - 66,560 pixels per sensor

- 16 readout chips (ROCs)
 - Bump-bonded to sensor
 - Thinned to 180µm & 75µm (L1)

- Si₃N₄ base-strips, 250µm thick or carbon fiber clip (L1)

Layer 1

- M = 1.6 g
- 0.74% of rad. length

Katja Klein

Upgrade of the CMS Tracker

5
Pixel Modules

Layers 2-4
- Power & data cable
 - Copper-cladded Al (125 & 360µm diam.)

Layer 1
- **M = 1.6 g**
- **0.74% of rad. length**

- PCB with data manager chips
 - 3 x 2µm Cu layers

- n+-in-n silicon sensor (as today)
 - Active area: 16.2 x 64.8 mm²
 - 100µm x 150µm pixels
 - 66 560 pixels per sensor

- 16 readout chips (ROCs)
 - Bump-bonded to sensor
 - Thinned to 180µm & 75µm (L1)

- Si₃N₄ base-strips, 250µm thick or carbon fiber clip (L1)
Pixel Modules

- **Power & data cable**
 - Copper-cladded Al (125 & 360µm diam.)

- **PCB with data manager chips**
 - 3 x 2µm Cu layers

- **n+-in-n silicon sensor (as today)**
 - Active area: 16.2 x 64.8 mm²
 - 100µm x 150µm pixels
 - 66 560 pixels per sensor

- **16 readout chips (ROCs)**
 - Bump-bonded to sensor
 - Thinned to 180µm & 75µm (L1)

- **Si₃N₄ base-strips, 250µm thick or carbon fiber clip (L1)**

- **Layers 2-4**
 - **Layer 1**
 - M = 1.6 g
 - 0.74% of rad. length

- **In total 1 846 modules and 124 million channels**
- **Same module geometry for barrel and end caps → simplification**
- **Qualification of bump-bonding (e.g. laser jet method) → mass production 2014**

Katja Klein
Upgrade of the CMS Tracker
The Readout Chip

- **New readout chip based on present PSI46 ROC**
 - Column drain architecture (as before)
 - Chip readout: 40 MHz analog → 160 Mbit/s digital
 - Increase of data buffer and time stamp buffer depth
 - Smaller cross-talk + improved comparator → smaller threshold
 - Dedicated version for layer 1: 4x4 clusters transferred in parallel
 - Output data stream per module: 40MHz → 400 Mbit/s

- PSI46digV2 under test, so far performing well
- Chip version for layer 1 to be submitted 11/2013

<table>
<thead>
<tr>
<th>Detector</th>
<th>% Data loss for (cm(^{-2})s(^{-1}) @ ns)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1 × 10(^{34}) @ 25</td>
</tr>
<tr>
<td>Current detector</td>
<td></td>
</tr>
<tr>
<td>BPIX1</td>
<td>4.0</td>
</tr>
<tr>
<td>Upgrade detector</td>
<td></td>
</tr>
<tr>
<td>BPIX1</td>
<td>1.19</td>
</tr>
<tr>
<td>BPIX2</td>
<td>0.23</td>
</tr>
</tbody>
</table>

Test beam
Stable & low noise operation with 1300 e\(^{-}\) threshold

Cluster charge [ke]

run 5305
1.3 ke

of clusters
• Factor 1.9 more channels → factor 4 larger ohmic losses
• Cables & power supplies to be re-used → DC-DC conversion: \(P = (r \cdot U) \times (I/r) \) with \(r = 3-4 \) → losses reduced by factor of \(\approx 10 \)
 • Buck converters convert 10V to 2.5V & 3.0V
 • 1 converter powers 1-4 pixel modules
 • ASIC by CERN
 • Power efficiency \(\approx 80\% \)
 • Good performance, including system tests with pixel modules

\[\eta \approx 4 \]

Distribution of pixel module noise

<table>
<thead>
<tr>
<th>No DC-DC</th>
<th>DC-DC</th>
<th>Orbit gaps</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean: 169.691</td>
<td>Mean: 169.743</td>
<td>Mean: 169.639</td>
</tr>
</tbody>
</table>
The Phase-2 Tracker Upgrade

Requirements:

- Radiation-hardness compatible with 3000 fb\(^{-1}\)
- High granularity compatible with few % occupancy at \(5 \cdot 10^{34} \text{ cm}^{-2}\text{s}^{-1}\)
 - Resolve 100-200 collisions per bunch crossing
- Reduction of material, to improve tracking performance at low \(p_T\)
- Provide tracker input to Level 1 (L1) trigger \(\rightarrow\) reduction of trigger rates without loss of performance
The Phase-2 Tracker Upgrade

Requirements:

• Radiation-hardness compatible with 3000 fb$^{-1}$
• High granularity compatible with few % occupancy at $5 \cdot 10^{34}$ cm$^{-2}$s$^{-1}$
 • Resolve 100-200 collisions per bunch crossing
• Reduction of material, to improve tracking performance at low p_T
• Provide tracker input to Level 1 (L1) trigger \rightarrow reduction of trigger rates without loss of performance

Basic concept:

• Tracker provides “readout data“ when triggered and “L1 trigger data“ \leftrightarrow 40MHz
• Local rejection of low p_T tracks to reduce volume of trigger data
• Discrimination on dedicated “p_T modules“ (details later)
• Level 1 tracks with $p_T > 2$ GeV are formed in the back-end
• Baseline layout is a classical barrel + endcap layout with 5 disks
 • Better performance at lower power, material & cost than a long barrel geometry
 • 15 348 modules, 58kW of front-end power (today: 15 148 modules, 33kW)
 • Option to extend pixel coverage to $\eta \approx 4$ is under consideration (baseline: $\eta < 2.5$)

• Two basic module types in outer tracker:
 • Modules with 2 strip sensors back-to-back (“2S p_T -modules“)
 • Modules with 1 pixel and 1 strip sensor back-to-back (“PS p_T -modules“)
• Currently tracker data is used at High Level Trigger (HLT) only → too large trigger rates at phase-2 conditions
• Solution: tracker provides data to L1 trigger
• Data reduction by rejection of low p_T tracks exploiting bending in B field
• Compare hit patterns in closely spaced layers → 2-cluster tracklets ("stubs")
• Tracks are formed from stubs at back-end, e.g. with associative memories
p_T -Modules

2S p_T -module

- For $r > 40cm$
- 2 strip sensor on top of each other
- Sensors wire-bonded to hybrid from top & bottom
- Strip dimensions: 5cm x 90µm
- 10 cm x 10 cm

PS p_T -module

- For $r > 20cm$
- 1 strip sensor and 1 pixel sensor on top of each other
- Strip dimensions: 2.5cm x 100µm
- Pixel dimensions: 1.5mm x 100µm
- Provides z information
- 5 cm x 10 cm

2S p_T -module is more advanced → will concentrate on 2S p_T -module
2S p_T-module

- For $r > 40$cm
- 2 strip sensor on top of each other
- Sensors wire-bonded to hybrid from top & bottom
- Strip dimensions: 5cm x 90µm
- 10 cm x 10 cm

PS p_T-module

- For $r > 20$cm
- 1 strip sensor and 1 pixel sensor on top of each other
- Strip dimensions: 2.5cm x 100µm
- Pixel dimensions: 1.5mm x 100µm
- Provides z information
- 5 cm x 10 cm

2S p_T-module is more advanced \rightarrow will concentrate on 2S p_T-module
Sensors for Phase-2 Outer Tracker

- Test campaign to identify **silicon sensors** for phase-2 outer tracker
- Comparison of sensors from same supplier (HPK)
- Floatzone (FZ), Magnetic Czochralski (MCz), Epitaxial
- Different polarities, thicknesses and geometries
- Irradiation with protons and neutrons, various steps e.g. r = 20cm: 1.5×10^{15} neq/cm²

→ **Several viable options identified, decision in August**

\[\text{Expected noise level} \sim 1\text{ke} \]
The CMS Binary Chip (CBC2)

- 130nm CMOS, C4 bump-bonds
- Unsparsified binary readout
- Receives data from both sensors
- Performs cluster correlation with programmable window width and offset
- Chip works, tests are ongoing
- Tests with charge injection & cosmics: stub finding works!

Mini-module with 2 CBC2s + hybrid prototype + test sensor
Conclusions

• Phase-1 pixel detector is well under way
• New geometry, improved readout chip and reduction of material leads to improved performance
• Target installation date: 2016/2017 extended technical stop
Conclusions

• Phase-1 pixel detector is well under way
• New geometry, improved readout chip and reduction of material leads to improved performance
• Target installation date: 2016/2017 extended technical stop

• R&D on phase-2 pixel detector has started
• Common R&D project on chip development with ATLAS
Conclusions

• Phase-1 pixel detector is well under way
• New geometry, improved readout chip and reduction of material leads to improved performance
• Target installation date: 2016/2017 extended technical stop

• R&D on phase-2 pixel detector has started
• Common R&D project on chip development with ATLAS

• Phase-2 outer tracker based on silicon sensors
• Baseline layout and baseline module design has recently been chosen
• Very active R&D on many fronts (could show only few highlights)
• Track trigger requirement presents an unprecedented challenge
• Technical proposal in 2014
Additional Material
2S p_T-Modules

Baseline module

Sensors are wire-bonded to hybrid from top and bottom

Hybrid

CMS Binary Chips (CBC)

Data concentrator chip

Cooling bridge and spacer

Kapton

Service hybrid
Low power GBT
DC-DC converter

Support from top and bottom

top sensor

bottom sensor

Katja Klein

Upgrade of the CMS Tracker
Sensors for Phase-2 Outer Tracker

- **n-type sensors:**
 - dd-FZ 320 um
 - dd-FZ 200 um
 - MCz 200 um

- **p-type sensors:**
 - p-stop
 - dd-FZ 320 um
 - dd-FZ 200 um
 - MCz 200 um
 - p-spray
 - dd-FZ 320 um
 - dd-FZ 200 um
 - MCz 200 um

Fluence (n_{eq}/cm^2) vs. Electron signal (e^-).

Fluence: $1E15$
Stub Processing at Back-End

- Reconstruct L1 tracks within trigger latency of 10 µsecs (today: 3.2µsec)
- L1 tracks are then matched with calorimeter and muon trigger objects
- Requires mapping of detector geometry into trigger towers
- Associative memories (AM) could be used for fast pattern recognition → then track fit
 - Estimate 100M patterns for the tracker

Emulated pattern recognition efficiency for electrons
(Example: 5 end cap disks)

4 stubs out of 5
5 stubs out of 5