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Atmospheric neutrinos 
●  Cosmic rays bombard upper 

atmosphere and collide with 
air nuclei 
 

●  Hadron production: 
pions, kaons, D-mesons ... 
 

●  Interaction & decay  
⇒  cascade of particles 
 

●  Semileptonic decays 
⇒ 	
neutrino flux INFN-Notizie  No.1 June 1999 
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Prompt vs conventional fluxes 
of atmospheric neutrinos 

Pions & 
kaons:  

long-lived 
⇒ lose 
energy 
before 
decay 

Charmed 
mesons: 

short-lived 
⇒ don't  

lose energy  
⇒ harder 
spectrum 

≈ 105.5 GeV 

Prompt flux:  Enberg, Reno, Sarcevic, arXiv:0806.0418 (in PRD) 
Conventional:  Gaisser & Honda,  Ann. Rev. Nucl. Part. Sci. 52, 153 (2002)   
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IceCube 

A. Schukraft for IceCube, arXiv:1302.0127 

Our 
calculation 

So far the limits only reach  
up to roughly the predicted 
cross-over point  
→ no sign of prompt flux 

A. Schukraft for the IceCube Collaboration / Nuclear Physics B Proceedings Supplement 00 (2013) 1–3 3
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Preliminary

Figure 3: Predictions for ⌫µ+⌫µ prompt atmospheric fluxes in compar-
ison to the expected flux of conventional atmospheric neutrinos. The
band around the Enberg et al. prediction marks its theoretical uncer-
tainty. The hatched area represents the envelope containing all limits
on the di↵erent predictions.

90% confidence level derived from this analysis on the
prompt flux is a factor of 3.8 larger than the flux calcu-
lated by Enberg et al. [1], which has been modified for
an improved parameterization of the primary cosmic-
ray spectrum and composition [5]. This analysis pro-
duces individual upper limits valid up to 360 TeV, which
is the end of the sensitive energy range defined by a
worsening of the analysis sensitivity by 5%. The lim-
its on each of the models are similar in normalization
but follow the slightly di↵erent shapes of the models.
Figure 3 shows the limits on several prompt neutrino
flux predictions in comparison to prompt flux expecta-
tions. These limits are below the prediction by Bugaev
et al. (RQPM) [3], but other prompt neutrino flux pre-
dictions are not yet in reach with the current sensitivity.

The preliminary upper limit derived on a generic as-
trophysical E�2 power law spectrum is E2d�/dE =
1.4 · 10�8 GeV cm�2 s�1 sr�1, which is slightly above the
Waxman-Bahcall bound. The limit on a di↵use astro-
physical flux is presented in Fig. 4.

The completed IceCube detector will provide much
higher statistics than this data sample and an expan-
sion to the higher-energy regime. Events with cascade
signatures allow a very precise energy reconstruction
and smaller background rates from conventional atmo-
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Preliminary

Figure 4: Limit on an extragalactic ⌫µ + ⌫µ di↵use neutrino flux from
this analysis in comparison to limits from previous experiments [7,
8] and flux predictions for extragalactic neutrino fluxes for di↵erent
source classes [9, 10, 11, 12, 13].

spheric muons and neutrinos. In a combined analysis,
IceCube will be able to challenge prompt neutrino flux
predictions as well as astrophysical flux models within
several years of operation.
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Limits 

The atmospheric neutrinos 
are the major background 
to e.g. the recent observed 
high-energy events 
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Problem with QCD in this process 
Charm cross section in LO QCD: 

 
 

  
where 
 

CMS energy is large:  s = 2Epmp  so   x1 ~  xF  x2 ≪ 1 

 

  xF=1:  E=105 → x ~ 4· 10−5     xF=0:  E=105 → x ~ 6· 10−3 
   E=106 → x ~ 4· 10−6       E=106 → x ~ 2· 10−3 
   E=107 → x ~ 4· 10−7       E=107 → x ~ 6· 10−4 

So very small x is needed for forward processes (large xF)! 
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Problem with QCD at small x 

●  Parton distribution functions poorly known at small x 
 

●  At small x, large logs must be resummed: [αs log(1/x)]n 

●  If logs are resummed (BFKL):  
power growth of gluon distribution as x → 0 
 

●  Unitarity would be violated (T-matrix > 1) 
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How small x do we know? 

●  We haven’t measured anything at such small x 
 

●  E.g. the MSTW pdf has xmin=10—6 
 

●  But that is an extrapolation! 
 

●  HERA pdf fits: Q2 > 3.5 GeV2 and x > 10—4 !  
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Kinematic plane 

x 

Q
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HERA: xmin ~ 10–4 used for PDF fits (Q2 ~ 3.5 GeV2) 
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Note 
LHeC! 



Parton saturation 

●  Saturation to the rescue: 

–  Number of gluons in the  
nucleon becomes so large 
that gluons recombine 

–  Reduction in the growth 

 
 

●  This is sometimes called the color glass condensate 
 

●  Non-linear QCD evolution: Balitsky-Kovchegov equation 
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Charm production 

●  We need charm production cross section dσ/dxF 
 

●  We use the dipole picture (see backup slides), and a 
solution of the Balitsky-Kovchegov equation 
 

●  Cross section at large energy suppressed relative to  
NLO QCD 
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Uncertainties in charm cross 
section 

Different charm mass, factorization scale, pdf choice 
    [R. Enberg, M.H. Reno, I. Sarcevic, arXiv:0806.0418 (in PRD)] 
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Total cross section, pp → cc 

ALICE 
ATLAS 

UA2 

STAR 

Very different energy dependence! 
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Gluon pdfs: very small x 

GJR-V is a new pdf: extrapolated down to x = 10–9 

CTEQ3 was used in original calculation 
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Theoretical uncertainties 

Given all these uncertainties, can we get a better handle on 
how uncertain our prediction is? 

 

Especially important given that this is a major background for 
IceCube and affects their significance calculations 

 

We are investigating the variation in theoretical predictions 
using different approaches  
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Updating the prediction 
Three issues: 

•  Saturation prediction 

•  Compare previous calculation with  
•  Running-coupling BK (numerical solution, AAMQS) 
•  BK/DGLAP matching (numerical solution) 

•  Fixed order prediction using small-x PDF 

•  Use NLO QCD with NLL resummation (FONLL) 

•  Nuclear dependence of incoming cosmic ray flux 

•  Previously used proton flux only. Assess impact of using 
e.g. polygonato flux with mixture of elements 

 

Work in progress (RE, Reno, Sarcevic, et al.) 
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Backup slides 
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Dipole frame picture of DIS 
It is convenient to use the dipole frame: 
 
→  Go to frame where the photon has very large lightcone 

 q+ momentum (e.g. proton’s rest frame) 
 
Then the photon fluctuates into a color dipole before hitting 
the target and the dipole scatters on the proton: 

Fluctuation is long-lived at small x: 
Very useful in small-x physics  
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DIS at small x in dipole picture 

The factorization is different from “standard” pQCD: 

The wave function for the fluctuation is given by: 

=

Dipole cross section from BK eqn 
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Generalize to hadron-hadron 
Generalized to dipole picture for heavy quark production 
in hadron-hadron collisions by Nikolaev, Piller & Zakharov; 
Raufeisen & Peng; Kopeliovich & Tarasov 

Gluon distribution 
of the projectile hadron 
→ gives dipole 

Scattering of 
this dipole on 
the target hadron 
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Dipole cross section from BK 
Iancu, Itakura and Munier: model for σd from the BK equation: 
Match two analytic solutions in different regions: 
●  Saturated region when the amplitude approaches one 
●  Color transparency region when it approaches BFKL result 

where 

Then 

Fitted to HERA data at small x: good description 
(we use an update by Soyez for heavy quarks) 
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