Baryon production mechanisms and jet energy loss in heavy ion collisions at RHIC and LHC energies

P. Lévai (WIGNER RCP, Budapest)
D. Berényi, A. Pásztor (ELTE Univ., Budapest)

EPS HEP 2013, Stockholm, 19 July 2013
Contents

1. Proton production at RHIC energies
 --- experimental data
 (STAR'09, PHENIX'11, ALICE'13)
 --- theoretical results with pQCD

2. New channel: diquark from strong field
 --- Wigner function and kinetic equation

3. Baryon yield from diquark channels
 and modifications in R_{AA}

4. LHC results and their interpretation
RHIC: R_{AA} for identified hadrons in AuAu at 200 AGeV -- STAR

2009 Quark Matter Conference, Knoxville,

Suggestion: q/g jet conversion
W. Liu, C.M. Ko, .., PRC75, 051901 (2007)

Problem: maybe it is not large enough, explains kaon, but not proton R_{AA}

→ Medium modified jets + FF: S. Sapeta, U. Wiedemann, EPJ C55, 293 (2008)
Latest result on strange hadron R_{AA} in Pb+Pb at 2.76 ATeV

ALICE (H. Appelshauser) vs. RHIC results on QM 2011/12

ALICE result at LHC: Λ^0 and K^0_S have the same suppression for $p_T > 8$ GeV/c
$R_{AA}(\Lambda^0)$ is enhanced over $R_{AA}(K^0_S)$ for $p_T < 8$ GeV/c
LHC: R_{AA} for identified hadrons in PbPb at 2.76 ATeV --- ALICE

2013 EPS HEP, ALICE talk of Peter Christiansen

Latest ALICE results (2013, Preliminary):

- $p_T < 10$ GeV/c: R_{AA} for protons $> R_{AA}$ for kaons and pions
- $p_T > 10$ GeV/c: R_{AA} for protons $\approx R_{AA}$ for kaons and pions

⇒ Modifications for protons (baryons) are acting under 10 GeV/c !!! (??)
What can we find in a “usual” pQCD based description?

1. Let see charged particle production at LHC energies

 \[\text{PDF} + \text{pQCD} + \text{FF} \rightarrow \text{hadron production in pp coll.} \]

2. + Shadowing
 + Multiscattering
 + QUENCHING \[\rightarrow \text{hadron production in AA coll.} \]

 \[\text{How large is } R_{AA}(\text{charged hadrons}) \text{ in this model ?} \]
Hard physics: pion production in AA collision at high-\(p_T\)

Perturbative QCD calculations in NLO for heavy ion collisions:

geometrical overlap + shadowing, multiscattering, jet-quenching, ...

\[E_\pi \frac{d \sigma^{AB}}{d^3 p_\pi} = \int d^2 b \, d^2 r \, t_A(\vec{r}) \, t_B(\vec{b} - \vec{r}) \, E_\pi \frac{d \sigma^{pp}}{d^3 p_\pi} \otimes S(...) \otimes M(...) \otimes Q(...) \]

\[\text{RHIC} \]
\[200 \text{ GeV/N} \]

\[\eta = 0 \]

ALICE: Latest result on charged hadron R_{AA} in Pb+Pb at 2.76 ATeV
Latest result on charged hadron R_{AA} in Pb+Pb at 2.76 ATeV

ALICE (H. Appelshauser) & CMS (Y.J. Lee) on QM 2011/2012
Latest calculations on charged hadron R_{AA} in Pb+Pb at 2.76 ATeV

pQCD + Quenching (only) P. Levai, Nucl. Phys. A862 (2011) 146
What can we find in a “usual” pQCD based description?

1. PDF + pQCD + FF --> proton production in pp coll.

2. + Shadowing
 + Multiscattering
 + QUENCHING --> proton production in AA coll.

*How large is $R_{AA}(\text{pion})$ and $R_{AA}(\text{proton})$ in this model?***
How large is the R_{AA} nuclear modification factor for pion and proton? What is the difference at RHIC?

Jet quenching scenario: $R_{AA}(\text{pion}) > R_{AA} (\text{proton})$

Preliminary RHIC data displays just the opposite !!!!
What is the difference at LHC at 2.76 ATeV?

What is the dependence on the hadron flavour with different FF?

Same situation at LHC!
Results of our study at LHC:

ALICE data on charged hadrons at 2.76 AGeV, PLB696(2011)30:

Coalescence of thermal quarks + pQCD with quenching

OK: Low-p_T and Intermediate-p_T region

Question: Proton R_{AA}?!

Suggestion: *Diquark channel from time dependent strong field*

New channel, open for extra proton production.

Non-perturbative, non-asymptotic color transport:

“confined flux tube formation and breaking”

--- phenomenological approximations are known (string, rope)
--- phenomenology is applied successfully in string-based codes
--- FRITIOF, PYTHIA, HIJING 1.0/2.0 are using strings
--- URQMD, HIJING BB is using ropes (melted strings)
--- good agreement with data at different energies

--- formal QCD-based equations are known (Heinz, Mrowczynski)
--- YM-field evolution in 3+1 dim, collision (Poschl, Müller)
--- lattice-QCD calculations have been started (Krasnitz, Lappi)
--- HIJING BB – ropes with large string constants (Topor Pop, Gyullasy)
--- time-dependent strong fields, color kinetic eq. (Skokov, PL)
Description of non-perturbative proton production from ropes:

The string constant is increased: \(\sigma = 3 \) GeV/fm

Description of non-perturbative particle production:

Non-perturbative, non-asymptotic color transport:

“pair-creation in strong fields”

--- strong (Abelian) static E field: Schwinger mechanism

probability of pair-creation:

\[
P(p_T) d^2 p_T = -\frac{e E}{4\pi^3} \ln (1 - \exp[-\pi \frac{m^2 + p_T^2}{eE}]) d^2 p_T
\]

integrated probability at mass m:

\[
P_m = \frac{(e E)^2}{4\pi^3} \sum_{n=1}^{\infty} \frac{1}{n^2} \exp[-\pi \frac{n m^2}{eE}]
\]

ratio of production rates (e.g. strange to light)

\[
\gamma_s = \frac{P(s \bar{s})}{P(q \bar{q})} = \exp[-\pi \frac{m_s^2 - m_q^2}{eE}]
\]

--- strong time dependent SU(N) color fields:

Kinetic Equation for the color Wigner function

Kinetic equation for fermion pair production:

Wigner function:
\[W(k_1, k_2, k_3) \]

Color decomposition:
\[W = W^s + W^a t^a, \quad \text{where} \quad a = 1, 2, \ldots, N_c^2 - 1 \]

Spinor decomposition:
\[W^{s; a} = a^{s; a} + b^{s; a} \gamma^\mu + c^{s; a} \sigma^{\mu\nu} + d^{s; a} \gamma^\mu \gamma^5 + i e^{s; a} \gamma^5 \]

Color vector field (longit.):
\[A^a_\mu = (0, -\vec{A}) = (0, 0, 0, A^a_3) \]

Kinetic equation for Wigner function:
\[
\partial_t W + \frac{g}{8} \frac{\partial}{\partial k_i} \left(4 \{ W, F_{0,i} \} + 2 \{ F_{i\nu}, [W, \gamma^0 \gamma^\nu] \} - [F_{i\nu}, \{ W, \gamma^0 \gamma^\nu] \} \right) = \\
= ik_i \{ \gamma^0 \gamma^i, W \} - i m [\gamma^0, W] + ig [A_i, [\gamma^0 \gamma^i, W]].
\]

for details see V.V. Skokov, P. Levai: PRD71 (2005) 094010 for U(1)\nPRD78 (2008) 054004 for SU(2)\nPRD82 (2010) 074014

Distribution function for fermions with mass m:
\[
f_f(\vec{k}, t) = \frac{m a^s(\vec{k}, t) + \vec{k} \cdot \vec{b}^s(\vec{k}, t)}{\omega(\vec{k})} + \frac{1}{2}
\]
Time dependent external field, $E(t)$ and neglected mass, $m=0$:

A, Pulse field (dotted):

$$E_{\text{pulse}}(t) = E_0 \left[1 - \tanh^2 \left(\frac{t}{\delta}\right)\right]$$

B, Constant field (dashed):

$$E_{\text{const}}(t) = E_{\text{pulse}}(t) \quad \text{at} \quad t < 0$$

$$E_{\text{const}}(t) = E_0 \quad \text{at} \quad t > 0$$

C, Scaled field (solid):

$$E_{\text{scaled}}(t) = E_{\text{pulse}}(t) \quad \text{at} \quad t < 0$$

$$E_{\text{scaled}}(t) = \frac{E_0}{(1 + t/t_0)^{\kappa}} \quad \text{at} \quad t > 0$$

$$\delta = 0.1/E_0^{1/2} \quad \text{at RHIC energy}$$

$$\kappa = 2/3 \quad \text{for scaled Bjorken expans.}$$

$$t_0 = 0.01/E_0^{1/2}$$
Numerical results for fermion distributions at \(t = 2/\sqrt{E_0} \) in SU(2):

- \(f_l(k_3) \): longitudinal mom. distr.
 - \(k_T/\sqrt{E_0} = 0.5 \)

- \(f_t(k_T) \): transv. mom.
 - \(k_3 = 0 \)
 - \(\Rightarrow \) exponential (pulse)
 - \(\Rightarrow \) polynomial (scaled)
Transverse momentum distr: scaling in $SU(3)$ at high-p_T ($m=0$)

$f_f(k_T)$: transv. mom. distr.

in $SU(3)$

3 cases of $E(t)$

[similar to $SU(2)$]

Ratios (scaled time evol.):

$SU(2) / U(1) \Rightarrow 3/4$

$SU(3) / U(1) \Rightarrow 4/3$

(simulating in the Kinetic Eq.)
Quark-pair production in strong coherent field
+ Diquark/antidiquark production in strong coherent field
= Extra (anti)baryon production from (anti)diquarks

Key point:
the time evolution of the strong field

\[E_{\text{scaled}}(t) = \frac{E_0}{(1 + t/t_0)^\kappa} \quad \text{at} \quad t > 0 \]

Scaled time evol. \(\mapsto\) polynomial spectra for quark/diquark different from pQCD calculations

further details under publications
What can we conclude from the latest data at LHC energies?
Latest calculations on charged hadron R_{AA} in Pb+Pb at 2.76 ATeV

pQCD + Quenching + Thermal coalesc. D. Berenyi, 1208.0448 [hep-ph]
Latest calculations on charged hadron R_{AA} in Pb+Pb at 2.76 ATeV

pQCD + Quenching + Schwinger diquark coalesc.

D. Berenyi, A. Pasztor, V.V. Skokov, P. Levai, 1208.0448 [hep-ph]

Extra proton yield from coalescence of Schwinger-diquarks
in the window of $2 \text{GeV}/c < p_T < 8 \text{GeV}/c$!!!
Latest calculations on charged hadron R_{AA} in Pb+Pb at 2.76 ATeV

$pQCD + Quenching + Schwinger diquark coalesc.

D. Berenyi, A. Pasztor, V.V. Skokov, P. Levai, 1208.0448 [hep-ph]
Latest calculations on charged hadron R_{AA} in Pb+Pb at 2.76 ATeV

$pQCD + Quenching + (Thermal + Schwinger diquark) coalesc.$

D. Berenyi, A. Pasztor, V.V. Skokov, P. Levai, 1208.0448 [hep-ph]

$R_{AA}(p) > R_{AA}(\text{pion})$ for $2 < p_T < 15$ GeV/c
Latest calculations on proton/pion ratio in Pb+Pb at 2.76 ATeV

pQCD + Quenching + (Thermal + Schwinger diquark) coalesc.

D. Berenyi, A. Pasztor, V.V. Skokov, P. Levai, 1208.0448 [hep-ph]

Extra proton yield at intermediate-\(p_T\) and high-\(p_T\)

Strongly depends on details of diquark pair-production
Complicated model with many channels (many parameters):

- pQCD
- + Quenching
- + thermal coalescence
- + Schwinger production + diquark coalescence

Control:

- pp data
- high-pT AA data (only pQCD + quenching)
- data on pions and protons
- data on kaons and lambdas
- data on further non-strange and strange hadrons, e.g. $R_{AA}(\Omega)$
- data on ...
Conclusions:

1. Baryon production mechanisms are not fully explored in non-perturbative cases, especially in case of strong fields.

2. If the overlap of heavy ions is very short, and the time scale of the initial phase is also short, then quark-pair and diquark-pair production is expected.

3. Diquarks increase the baryon yields, but not mesons.

4. LHC data with PID are extremely interesting, detailed studies are in progress.

5. What happened with the RHIC results which display the interesting $R_{AA}(\text{proton}) > R_{AA}(\text{pion})$ data ??