SUSY precision spectroscopy and parameter determination at the ILC.

Mikael Berggren, DESY, on behalf of the ILD concept group

STC4 - An MSSM model with a rich spectrum

STC4 - for $\tilde{\tau}$ -coannihilation model 4 - is a pMSSM model which is allowed by LHC8 data, but still has a very rich spectrum of bosinos and sleptons observable at the ILC running at $E_{\rm CMS}$ from 250 GeV to 1 TeV. The figures below shows the production cross-section and decay modes of sparticles that can be produced at the ILC.

\tilde{e}_R - Early discovery at a staged ILC

The first channel to manifest itself at the ILC depends on the assumed running scenario. If the ILC starts out as a Higgs factory at $E_{\rm cms}=250\,{\rm GeV}$, then ${\rm e^+e^-}\to \tilde{\tau}_1\tilde{\tau}_1$ and $\tilde{\chi}_1^0\tilde{\chi}_1^-\gamma$ would be the first observable channels.

As soon as the centre-of-mass energy is raised past the pair production threshold for right-handed sleptons, in STC4 when $E_{\rm CMS} \gtrsim 270$ GeV, the e^+e^-+ missing 4-momentum signature would see a striking signal within a few days:

SUSY in a week.

Threshold scan of $\widetilde{\mu}_{R}$

The cross-section for $\tilde{\mu}_R$ pair production is much lower than for \tilde{e}_R due to the absence of a t-channel. Still the $\tilde{\mu}_R$ mass can be determined to $\sim 200\,\text{MeV}$ by scanning the production threshold near $270\,\text{GeV}$. By measuring the momenta of the muons from the $\tilde{\mu}_R$ decays very precisely close to the threshold, $M_{\tilde{\chi}_1^0}$ can also be extracted with an error $\sim \delta M_{\tilde{\mu}_R}$.

 $\delta M_{\widetilde{\mu}_{
m R}}$ = 200 MeV $\delta M_{\widetilde{\chi}^0_0}$ = 200 MeV

ILC at full speed: The $\widetilde{\mu}_L$

The largest contributions to the di-muon + missing 4-momentum at $E_{\rm CMS}$ =500 GeV signature comes from $\tilde{\mu}_{\rm R}$ and $\tilde{\tau}_{1}$ decays, $\tilde{\mu}_{L}$ can also be studied in detail. Here we show zooms into the muon energy spectrum at the kinematic edge regions for $\tilde{\mu}_{L}$ after dedicated selection. From the edge positions, the $\tilde{\mu}_{L}$ mass can be determined to $400\,{\rm MeV}$

Muons from $\tilde{\chi}_2^0$ decays

The even smaller contribution from $\tilde{\chi}_1^0 \tilde{\chi}_2^0 \to \mu \mu \tilde{\chi}_1^0 \tilde{\chi}_1^0$ can also be identified, eg. in the invariance mass spectrum of the two muons. From this channel alone, the mass of the $\tilde{\chi}_2^0$ can be determined to a precision of about 1 GeV, depending on the assumed precision for the mass of $\tilde{\mu}_R$ and $\tilde{\chi}_1^0$.

$\delta M_{ ilde{\chi}^0_2}\!\!=1$ GeV

The cosmic connection: $\tilde{\tau}$ mass and cross-section

Especially in $\tilde{\tau}$ -coannihilation scenarios, a precise determination of the $\tilde{\tau}$ sector is essential in order to be able to predict the expected relic density with sufficient precision to test whether the $\tilde{\chi}^0_1$ is indeed the dominant Dark Matter constituent. With the ILC at $E_{\rm CMS}=500$ GeV, the $\tilde{\tau}_1$ mass can be determined to 200 MeV, and the $\tilde{\tau}_2$ mass to 5 GeV from the endpoint of the τ -jet energy spectrum. Production cross section for both these modes can be determined at the level of 4%

By using all available collider observables to determine the SUSY parameters, one can predict the relic density based on the assumption that the $\tilde{\chi}_1^0$ is the only contribution to Dark Matter.

This was studied by the Fittino group in a similar model, in particular the $\tilde{\chi}_1^0$ and $\tilde{\tau}_1$ properties were identical to STC4. Fit with 18 free parameters, and predict $\Omega_{\rm CDM}h^2$.

τ polarisation and mixing and $\tilde{\chi}_1^0$ nature

The polarisation of τ -leptons from the $\tilde{\tau}_1$ decay, which gives access to the $\tilde{\tau}_1$ and $\tilde{\chi}_1^0$ mixing - gauginos conserve chirality, higgsinos flips it - can be measured with an accuracy better than 10%, eg. from $\tau \to \pi^+ \nu_\tau$ decays. from decays to ρ -mesons $(\tau \to \rho^+ \nu_\tau \to \pi^+ \pi^0 \nu_\tau)$. In this case, the observable $R = E_\pi/E_{jet}$ can be used to measure the τ -polarisation to $\pm 5\%$ by a fit of templates to the data. The $\tilde{\tau}$ mixing itself can be extracted in several ways: Comparing the cross-section at different beam-polarisations, determining the cross-section for $\tilde{\tau}_1\tilde{\tau}_2$ production, or from the comparing the masses of the (up-mixed) $\tilde{\epsilon}$ is and $\tilde{\mu}$ is to $M_{\tilde{\epsilon}}$ and $M_{\tilde{\epsilon}}$

Cascade decays and slepton reconstruction:

SUSY is a peak!

A particularly interesting channel is $e^+e^- \to \tilde{\chi}_2^0 \tilde{\chi}_2^0$ and the $\tilde{\chi}_2^0$ decay to $\tilde{\mu}_R \mu$ or to $\tilde{e}_R e$), even if the branching ratio is at the level of a few percent like in our example point. These cascade decays can be fully kinematically constrained at the ILC, and would promise to yield even lower uncertainties on the $\tilde{\mu}_R$ and \tilde{e}_R masses than the threshold scans, of the order of 25 MeV. This is estimated on an earlier study in a scenario with about twice as large branching ratios for the considered decay mode, where a precision of 10 MeV was found. The corresponding distribution of the reconstructed $\tilde{\mu}_R$ mass is shown including all SM and SUSY backgrounds. Even the dominating decays to $\tilde{\tau}_1 \tau$ can be constrained as shown in the right part and could yield comparable results to a threshold scan.

More info:

- H. Baer and J. List, arXiv:1307.0782 [hep-ph].
- P. Bechtle, & al. Phys. Rev. D **82**, 055016 (2010) [arXiv:0908.0876 [hep-ex]].
- M. Berggren, in "Proceedings, LCWS 2004, Paris, France, " arXiv:hep-ph/0508247.
- P. Bechtle, & al. Eur. Phys. J. C 66 (2010) 215 [arXiv:0907.2589 [hep-ph]].
 N. D'Ascenzo, DESY-THESIS-2009-004.
- http://www.linearcollider.org/ILC/Publications/Technical-Design-Report

