Impact of LHC bounds on the W-boson mass prediction in SUSY models

based on work in collaboration with Sven Heinemeyer and Georg Weiglein

Lisa Zeune

EPS HEP 2013, Stockholm

19 July 2013

W-boson mass

Electroweak precision observables

$$M_W$$
, $\sin^2 \theta_{\text{eff}}$, a_{μ} ...

- Highly sensitive to quantum effects of 'new physics'
- Precise measurement & precise theoretical calculation needed
 - Test models
 - Constrain model parameters

W-boson mass

Electroweak precision observables

$$M_W$$
, $\sin^2 \theta_{\text{eff}}$, a_{μ} ...

- Highly sensitive to quantum effects of 'new physics'
- Precise measurement & precise theoretical calculation needed
 - Test models
 - Constrain model parameters

Outline of this talk

- Theoretical prediction of the W-boson mass in the MSSM
- Analyze effect of SUSY particles on the M_W prediction
- Effects of LHC results on the M_W prediction

Experimental measurement of the W-boson mass

Most accurate measurement from Tevatron

Further improvement possible

→ See talk by T. Kurca

$$M_W^{\rm exp} = 80.385 \pm 0.015 {
m GeV}$$

Tevatron Electroweak Working Group April '12

- Improvement at the LHC possible but very challenging
- Great improvement possible at a linear collider
 - Measurement with ~7 MeV uncertainty plausible at LC
- Improvement in the top mass measurement
 - LC goal: 100 MeV precision
 - \longrightarrow Higher accuracy of theoretical M_W prediction

Determination of the W-boson mass

 Comparison of muon decay in SM and Fermi model gives:

$$\frac{G_F}{\sqrt{2}} = \frac{e^2}{8s_W^2 M_W^2} (1 + \Delta r(M_W, M_Z, m_t, \dots X))$$

- G_F , e, s_W known with high precision
- X model dependent!
- Precise calculation of Δr needed to test model and constrain model parameters!

Calculation of Ar

- 1-loop calculation of Δr in the MSSM and the NMSSM
 - General (N)MSSM, complex phases, CKM mixing (MFV)
- Incorporation of all known SM and SUSY higher order corrections
- To make use of advanced SM calculation:

$$\Delta r^{(\mathrm{N})\mathrm{MSSM}} = \Delta r^{\mathrm{SM}} + \Delta r^{\mathrm{SUSY}}$$

- Most precise MSSM prediction for the W-boson mass
- Easy to extend to other models

Calculation of Ar

- 1-loop calculation of Δr in the MSSM and the NMSSM
 - General (N)MSSM, complex phases, CKM mixing (MFV)
- Incorporation of all known SM and SUSY higher order corrections
- To make use of advanced SM calculation:

$$\Delta r^{(\mathrm{N})\mathrm{MSSM}} = \Delta r^{\mathrm{SM}} + \Delta r^{\mathrm{SUSY}}$$

- Most precise MSSM prediction for the W-boson mass
- Easy to extend to other models

SM contributions to W-boson mass

$$\Delta r^{SM} = \Delta r^{(\alpha)} + \Delta r^{(\alpha\alpha_s)} + \Delta r^{(\alpha\alpha_s^2)} + \Delta r^{(\alpha^2)}_{\text{ferm}} + \Delta r^{(\alpha^2)}_{\text{bos}} + \Delta r^{(G_{\mu}^2\alpha_s m_t^4)} + \Delta r^{(G_{\mu}^3 m_t^6)} + \Delta r^{(G_{\mu}m_t^2\alpha_s^3)}$$

- $\Delta r^{(lpha)}$: 1-loop contribution
- $\Delta r^{(\alpha\alpha_s)} + \Delta r^{(\alpha\alpha_s^2)}$: 2- and 3-loop QCD correction Chetyrkin, Kuhn, Steinhauser '95, Djouadi, Verzegnassi '88, ...
- $\Delta r_{
 m ferm}^{(lpha^2)} + \Delta r_{
 m bos}^{(lpha^2)}$: fermionic and bosonic electroweak 2-loop corrections (fitting formula)

Awramik, Czakon, Freitas '06, Awramik, Czakon, Freitas, Weiglein '03

- $\Delta r^{(G_\mu^2 \alpha_s m_t^4)} + \Delta r^{(G_\mu^3 m_t^6)}$: 3-loop top quark contributions Faisst, Kuhn, Seidensticker, Veretin '03
- $\Delta r^{(G_{\mu}m_t^2lpha_s^3)}$: 4-loop QCD correction Boughezal '06
- QCD corrections enter at 2-loop level:

Calculation of Δr

- 1-loop calculation of Δr in the MSSM and the NMSSM
 - General (N)MSSM, complex phases, CKM mixing (MFV)
- Incorporation of all known SM and SUSY higher order corrections
- To make use of advanced SM calculation:

$$\Delta r^{(\mathrm{N})\mathrm{MSSM}} = \Delta r^{\mathrm{SM}} + \Delta r^{\mathrm{SUSY}}$$

- Most precise MSSM prediction for the W-boson mass
- Easy to extend to other models

SUSY contributions to W-boson mass

 1-loop contributions from MSSM Higgs, sfermions, charginos and neutralinos

- Supersymmetric two-loop contributions:
 - SUSY QCD corrections of $O(\alpha\alpha_s)$ Djouadi et. al '98 (S)quark loops with gluon and gluino exchange
 - Yukawa contributions
 (S)quark loops with Higgs and Higgsino exchange

 Haestier, Heinemeyer,
 Stoeckinger, Weiglein '05
- Leading reducible two-loop corrections Consoli, Hollik, Jegenlehner '89

Detailed parameter scan

Parameter	Minimum	Maximum	
μ	-2000	2000	
$M_{\tilde{E}_{1,2,3}} = M_{\tilde{L}_{1,2,3}}$	100	2000	
$M_{\tilde{E}_{1,2,3}} = M_{\tilde{L}_{1,2,3}}$ $M_{\tilde{Q}_{1,2}} = M_{\tilde{U}_{1,2}} = M_{\tilde{D}_{1,2}}$	500	2000	
$M_{ ilde{Q}_3}$	100	2000	
$M_{ ilde{U}_3}^{oldsymbol{\circ}}$	100	2000	
$M_{ ilde{D}_3}$	100	2000	
$A_e = A_{\mu} = A_{\tau}$ $A_u = A_d = A_c = A_s$	$-3M_{ ilde{E}}$	$3M_{ ilde{E}}$	
$A_u = A_d = A_c = A_s$	$-3M_{\tilde{Q}_{12}}$	$3M_{\tilde{Q}_{12}}$	
A_b	$-3\max(M_{\tilde{Q}_3},M_{\tilde{D}_3})$	$3\max(M_{\tilde{Q}_3},M_{\tilde{D}_3})$	
A_t	$-3\max(M_{\tilde{Q}_3},M_{\tilde{U}_3})$	$3\max(M_{\tilde{Q}_3},M_{\tilde{U}_3})$	
aneta	1	60	
M_3	500	2000	
M_A	90	1000	
M_2	100	1000	

 $M_1 \approx 1/2 M_2$

W-boson mass prediction in the MSSM

MSSM region:
allowed by
HiggsBounds*
and PDG limits on
SUSY particles,
neutralino LSP

Overlap region
(SM and MSSM):
After Higgs
discovery SM band
very narrow

S. Heinemeyer, G. Weiglein, L. Z. '13 - PRELIMINARY

^{*} P. Bechtle, O. Brein, S. Heinemeyer, O. Stål, T. Stefaniak, G. Weiglein and K. Williams

W-boson mass prediction in the MSSM

$$\Delta r^{\text{1-loop}} = \Delta \alpha - \frac{c_W^2}{s_W^2} \Delta \rho + \Delta r_{\text{rem}}$$

• Largest SUSY contribution: \tilde{t}, \tilde{b} contribution to

$$\Delta \rho = \frac{\Sigma_T^Z(0)}{M_Z^2} - \frac{\Sigma_T^W(0)}{M_W^2}$$

- Sensitive to mass splitting between stops and sbottoms
- Very large values for M_W possible for
 - Large mixing in \tilde{t}, \tilde{b} sector
 - \tilde{t}_1 or \tilde{b}_1 relatively light
 - Restriction: $m_{\tilde{t}_2}/m_{\tilde{t}_1} < 2.5, \ m_{\tilde{b}_2}/m_{\tilde{b}_1} < 2.5$

Impact of a Higgs at 125 GeV

S. Heinemeyer, G. Weiglein, L. Z. '13 - PRELIMINARY

- The discovered Higgs boson can in the MSSM be interpreted both as the light or heavy CP-even Higgs
- In both cases M_W prediction in good agreement with current measurement

Contribution from SUSY particles

Effects from charginos, neutralinos and sleptons:

S. Heinemeyer, G. Weiglein, L. Z. '13 - PRELIMINARY

Contribution from SUSY particles

Effects from charginos, neutralinos and sleptons:

- Contribution from light sleptons ≥ 60 MeV (mainly from mass splitting between charged sleptons and sneutrinos)
 - Contribution from charginos and neutralinos ≈ 20 MeV

All other SUSY particles heavy

Impact of stop and sbottom mass limit

Blue points:

Stop, sbottoms heavier than 500 GeV, squarks and gluinos heavier than 1200 GeV

- Limits on stop and sbottom masses would decrease the possible size of the SUSY contributions
- M_W prediction in good agreement with exp. measurement

Conclusions

- Precise prediction of W-boson mass in the MSSM
- Size of SUSY contributions:
 - Largest contribution from stops and sbottoms
 - ightarrow Limits on 3rd generation squarks have large impact on M_W
 - → No restriction possible
 - Light sleptons and charginos, neutralinos give sizable contributions → sizable shift compared to SM even for very heavy squarks
- Both MSSM interpretations of a Higgs at 125 GeV give W-boson mass prediction in good agreement with measurement
- Current value favors non-zero SUSY contribution
- Higher precision needed to distinguish between models

Back-up slides

S. Heinemeyer, G. Weiglein, L. Z. '13 - PRELIMINARY

If stops are heavy:

- Still sizable SUSY contributions from: sleptons charginos, neutralinos
 - + remaining contributions from stop, sbottoms

Compatible with measurement

All HiggsBounds allowed points

LHC bounds on squarks and gluinos have very little impact on W-boson mass prediction

+ squarks and gluinos heavier than 1200 GeV

If sbottoms are heavier than 500 GeV:

Very large M_W values impossible

Good compatibility with experimental result

+ sbottoms heavier than 500 GeV

+ sleptons and charginos heavier than 500 GeV

New measurement of the W-boson mass

New CDF Result (2.2 fb⁻¹) Transverse Mass Fit Uncertainties (MeV)

	electrons	muons	common
W statistics	19	16	0
Lepton energy scale	10	7	5
Lepton resolution	4	1	0
Recoil energy scale	5	5	5
Recoil energy resolution	7	7	7
Selection bias	0	0	0
Lepton removal	3	2	2
Backgrounds	4	3	0
pT(W) model	3	3	3
Parton dist. Functions	10	10	10
QED rad. Corrections	4	4	4
Total systematic	18	16	15
Total	26	23	

W boson mass prediction SM

- Corrections beyond one-loop cause downward shift of more than 100 MeV
- Dominant contributions: $\Delta r^{(\alpha\alpha_s)} + \Delta r^{(\alpha\alpha_s^2)} \ (\approx 14\% \text{ of } \Delta r^{(\alpha)})$ $\Delta r^{(\alpha^2)} \ (\approx 9\% \text{ of } \Delta r^{(\alpha)})$
- Preference for small SM Higgs masses
- No overlap between 1σ band and theoretical prediction for $m_{h_{\rm SM}} > 114~{\rm GeV}$
- ▶ Dominant theoretical uncertainty from m_t (higher order uncertainty 4 MeV)

Full Ar formula

$$\Delta r = \frac{\Sigma_{T}^{WW}(0) - \text{Re}\left(\Sigma_{T}^{WW}(M_{W}^{2})\right)}{M_{W}^{2}} + \Pi^{AA}(0) - \frac{c_{W}^{2}}{s_{W}^{2}} \text{Re}\left[\frac{\Sigma_{T}^{ZZ}(M_{Z}^{2})}{M_{Z}^{2}} - \frac{\Sigma_{T}^{WW}(M_{W}^{2})}{M_{W}^{2}}\right]$$

$$+ 2\frac{s_{W}}{c_{W}} \frac{\Sigma_{T}^{AZ}(0)}{M_{Z}^{2}} + \text{Vertex} + \text{Box} - \frac{1}{2} \text{Re}\left(\Sigma_{L}^{e}(0) + \Sigma_{L}^{\mu}(0) + \Sigma_{L}^{\nu_{e}}(0) + \Sigma_{L}^{\nu_{e}}(0)\right)$$