Max Baak (CERN), on behalf of the Gfitter group (*) EPS 2013, Stockholm, 18th-24th July 2013

EPJC 72, 2205 (2012), arXiv:1209.2716

The ElectroWeak fit of the Standard Model and Beyond

(*) M. Baak, J. Haller, A. Höcker, R. Kogler, K. Mönig, M. Schott, J. Stelzer

The predictive power of the SM

- As the Z boson couples to all fermions, it is ideal to measure & study both the electroweak and strong interactions.
- Tree level relations for $Z \rightarrow ff$
 - $i\bar{f}\gamma^{\mu}\left(g_{V,f}-g_{A,f}\gamma_{5}
 ight)fZ_{\mu}$ ~~~~
 - Unification connects the electromagnetic and weak couplings
- The impact of loop corrections
 - Absorbed into EW form factors: ρ , κ , Δr •
 - Effective couplings at the Z-pole
 - Quadraticly dependent on m_t, *logarithmic* dependence on M_H

 \sqrt{s} [GeV]

$$g_{V,f} = \sqrt{\rho_Z^f} \left(I_3^f - 2Q^f \sin^2 \theta_{\text{eff}}^f \right)$$
$$g_{A,f} = \sqrt{\rho_Z^f} I_3^f$$
$$\sin^2 \theta_{\text{eff}}^f = \kappa_Z^f \sin^2 \theta_W$$
$$M_W^2 = \frac{M_Z^2}{2} \left(1 + \sqrt{1 - \frac{\sqrt{8\pi\alpha(1 + \Delta r)}}{G_F M_Z^2}} \right)$$

The SM fit with Gfitter, including the Higgs

- Discovery of Higgs-like boson by LHC
 - Cross section x branching ratios, spin, parity, compatible with SM Higgs boson
 - This talk: assume boson is SM Higgs.
 - Use in EW fit: $M_{H} = 125.7 \pm 0.4 \text{ GeV}$
 - Change between fully uncorrelated and fully correlated systematic uncertainties is minor: δM_H : 0.4 \rightarrow 0.5 GeV

• EW observables precisely predicted at loop level \rightarrow test consistency of SM!

The SM fit with Gfitter, including the Higgs

- Discovery of Higgs-like boson by LHC
 - Cross section x branching ratios, spin, parity, compatible with SM Higgs boson
 - This talk: assume boson is SM Higgs.
 - Use in EW fit: $M_{H} = 125.7 \pm 0.4 \text{ GeV}$
 - Change between fully uncorrelated and fully correlated systematic uncertainties is minor: δM_H : 0.4 \rightarrow 0.5 GeV

- EW observables precisely predicted at loop level → test consistency of SM!
- In EW fit with Gfitter we use state-of-the-art calculations:
 - M_W Mass of the W boson [M. Awramik et al., Phys. Rev. D69, 053006 (2004)] • $\sin^2\theta_{eff}$ Effective weak mixing angle [M. Awramik et al., JHEP 11, 048 (2006), M. Awramik et al., Nucl.Phys.B813:174-187 (2009)]
 - Full two-loop + leading beyond-two-loop form factor corrections
 - Γ_{had} QCD Adler functions at N³LO [P. A. Baikov et al., PRL108, 222003 (2012)]
 - N³LO prediction of the hadronic cross section
 - Partial width of $Z \rightarrow b\overline{b}$ [Freitas et al., JHEP08, 050 (2012)] EW 2-loop calc.

Electroweak Fit – Experimental inputs

	$M_H~[{ m GeV}]^\circ$	125.7 ± 0.4	LHC
Latest experimental inputs:	M_W [GeV]	80.385 ± 0.015	
 Z-pole observables: from LEP / SLC [ADLO+SLD, Phys. Rept. 427, 257 (2006)] 	Γ_W [GeV]	2.085 ± 0.042	Tevatron
• M_W and Γ_W from LEP/Tevatron	M_Z [GeV]	91.1875 ± 0.0021	
[arXiv:1204.0042, arXiv:1302.3415]	Γ_Z [GeV]	2.4952 ± 0.0023	
 m_{top} latest avg from Tevatron [arXiv:1305.3929] 	$\sigma_{ m had}^0$ [nb]	41.540 ± 0.037	LEP
	R_ℓ^0	20.767 ± 0.025	
 m_e, m_b world averages (PDG) 	$A_{ m FB}^{0,\ell}$	0.0171 ± 0.0010	
[PDG, J. Phys. G33,1 (2006)]	$A_\ell \ ^{(\star)}$	0.1499 ± 0.0018	SLC
• $\Delta \alpha_{had}^{(5)} (M_Z^2)$ including α_S dependency	$\sin^2\!\! heta_{ m eff}^\ell(Q_{ m FB})$	0.2324 ± 0.0012	
[Davier et al., EPJC 71, 1515 (2011)]	A_c	0.670 ± 0.027	
 M_H from LHC 	A_b	0.923 ± 0.020	SLC
[arXiv:1207.7214, arXiv:1207.7235]	$A_{ m FB}^{0,c}$	0.0707 ± 0.0035	
	$A_{ m FB}^{0,b}$	0.0992 ± 0.0016	LEP
7+2 free fit parameters:	R_c^0	0.1721 ± 0.0030	
• M_Z , M_H , $\alpha_S(M_Z^2)$, $\Delta \alpha_{had}^{(5)}(M_Z^2)$,	R_b^0	0.21629 ± 0.00066	
m _t , m _c , m _b	\overline{m}_c [GeV]	$1.27^{+0.07}_{-0.11}$	
 2 theory nuisance parameters 	\overline{m}_b [GeV]	$4.20^{+0.17}_{-0.07}$	_
- δM _W (4 MeV), δsin ² θ ^I _{eff} (4.7x10 ⁻⁵)	m_t [GeV]	173.20 ± 0.87	Tevatron
	$\Delta \alpha_{ m had}^{(5)}(M_Z^2) \ ^{(\dagger \bigtriangleup)}$	2756 ± 10	-

Electroweak Fit – SM Fit Results

- Black: direct measurement (data)
- Orange: full fit including M_H
- Light-blue: fit including M_H, but excluding input from the row
- Results drawn as *pull values:* deviations to the *indirect* determinations, divided by *total error*.
- Total error: error of direct measurement plus error from indirect determination.
- The prediction is often better than the measurement!

Electroweak Fit – SM Fit Results

- Black: direct measurement (data)
- Orange: full fit including M_H
- Light-blue: fit including M_H, but excluding input from the row
- Results drawn as *pull values:* deviations to the *indirect* determinations, divided by *total error*.
- Total error: error of direct measurement plus error from indirect determination.
- The prediction is often better than the measurement!

Electroweak Fit – SM Fit Results

- Pull values of full fit (with M_H)
 - No individual value exceeds 3σ
 - <u>Small pulls</u> for M_H , M_Z , $\Delta \alpha_{had}^{(5)}(M_Z^2)$, $\overline{m_c}$, $\overline{m_b}$ indicate that input accuracies exceed fit requirements
 - Largest deviations in b-sector: $A^{0,b}_{FB}$ and R^{0}_{b} with 2.5 σ and -2.1 σ \rightarrow largest contribution to χ^{2}
 - R⁰_b using one-loop calculation -0.8σ
 - R_{b}^{0} has only little dependence on M_{H}
- Most affected when including M_H:
 - Shift in predicted M_W value of 13 MeV.
- Goodness of fit p-value:
 - χ^2_{min} = 20.7 \rightarrow Prob(χ^2_{min} , 14) = 11%
 - From pseudo experiments: 9⁺² %
 - Large value of $\chi^2_{\mbox{ min}}$ not due to inclusion of $M_{\mbox{ H}}$ measurement.
 - Without M_H measurement: χ^2_{min} = 19.3 \rightarrow Prob(χ^2_{min} , 13) = 11%

Higgs results of the EW fit

Indirect determination of W mass

Uncertainty on world average measurement: 15 MeV

State of the SM: W versus top mass

- Scan of M_W vs m_t, with the direct measurements excluded from the fit.
- Results from Higgs measurement significantly reduces allowed indirect parameter space → corners the SM!

Observed agreement demonstrates impressive consistency of the SM!

Constraints on BSM models

- If energy scale of NP is high, BSM physics appears dominantly through vacuum polarization corrections.
- Described with STU parametrization [Peskin and Takeuchi, Phys. Rev. D46, 1 (1991)]
- SM: M_H = 125.7 GeV, m_t = 173.2 GeV
 - This defines (S,T,U) = (0,0,0)
- S, T depend logarithmically on M_H

Fit result:		S	Т	U
$S = 0.03 \pm 0.10$	S	1	+0.89	-0.54
$T = 0.05 \pm 0.12$	Т		1	-0.83
$U = 0.03 \pm 0.10$	U			1

- Stronger constraints from fit with U=0.
- Also results for $Z \rightarrow b\overline{b}$ correction (backup)_{-0.3}
- No indication for new physics.
- Can now use this constrain 4th gen, Ex-Dim, T-C, *Higgs couplings*, etc.

s

Modified Higgs couplings

- Study of potential deviations of Higgs couplings from SM.
- BSM modeled as extension of SM through effective Lagrangian.
 - Consider leading corrections only.
- Model considered here:
 - Scaling of Higgs-vector boson (c_V) and Higgs-fermion couplings (c_F), with no invisible/undetectable widths.
 - (Custodial symmetry is assumed.)
- Main effect on EWPO due to modified Higgs coupling to gauge bosons (c_V).

• Espinosa et al [arXiv:1202.3697], Falkowski et al [arXiv:1303.1812], etc.

$$S = \frac{1}{12\pi} (1 - c_V^2) \log\left(\frac{\Lambda^2}{m_h^2}\right), \quad T = -\frac{3}{16\pi c_W^2} (1 - c_V^2) \log\left(\frac{\Lambda^2}{m_h^2}\right), \quad \Lambda = 4\pi v / \sqrt{|1 - c_V^2|}$$

The ElectroWeak fit of Standard Model

Reproduction of ATLAS and CMS results

Max Baak (CERN)

Higgs coupling results

- Private LHC combination:
 - $c_V = 1.00 \pm 0.06$
 - $c_F = 0.89 \pm 0.13$

- Result from stand-alone EW fit:
- $c_V = 1.02 \pm 0.02$
- (Using cutoff scale: $\Lambda(0) = 3 \text{ TeV}$)

- EW fits gives more precise result than current LHC experiments for c_V.
- EW fit: deviation of c_V from one driven by small tension in W mass prediction versus measurement.

Prospects of EW fit for ILC with Giga Z

- Future Linear Collider can improve precision of EWPO's tremendously.
 - *WW threshold, to obtain M_W*
 - from threshold scan: δM_W : 15 \rightarrow 6 MeV
 - ttbar threshold, to obtain m_t
 - obtain m_t indirectly from production cross section: $\delta m_t: 0.9 \rightarrow 0.1 \; GeV$
 - Z pole measurements
 - High statistics: 10⁹ Z decays: δR^{0}_{lep} : 2.5 \cdot 10⁻² \rightarrow 4 \cdot 10⁻³
 - With polarized beams, uncertainty on $\delta A^{0,f}_{LR}$: $10^{-3} \rightarrow 10^{-4}$, which translates to $\delta \sin^2 \theta^{I}_{eff}$: $1.6 \cdot 10^{-4} \rightarrow 1.3 \cdot 10^{-5}$
 - $H \rightarrow ZZ$ and $H \rightarrow WW$ couplings: measured at 1% precision.
- Low-energy data results to improve $\Delta \alpha_{had}$:
 - ISR-based (BABAR) and KLOE-II (both low energy), and BESIII e⁺e⁻ cross-section measurements, in particular around cc resonance.
 - Plus: improved α_s , improvements in theory: $\Delta \alpha_{had}$: $10^{-4} \rightarrow 5 \cdot 10^{-5}$
- Assuming 50% of today's theoretical uncertainties on M_W and $sin^2\theta_{eff}^{I}$
 - Implies three-loop EW calculations!
 - $\delta M_W (4 \rightarrow 2 \text{ MeV}), \ \delta \sin^2 \theta |_{eff} (4x10^{-5} \rightarrow 2x10^{-5})$

Prospects for ILC with Giga Z

- Logarithmic dependency on $M_H \rightarrow$ cannot compete with direct M_H meas.
- Indirect prediction M_H dominated by theory uncertainties.
 - No theory uncertainties: $M_H = 126 \pm 7 \text{ GeV}$
 - R-fit scheme:
 - Present day theory uncertainties:

$$M_{H} = 126 \pm 7 \text{ GeV}$$

 $M_{H} = 126^{+12}_{-10} \text{ GeV}$

 If EWP-data central values unchanged, i.e. keep favoring low value of Higgs mass (94 GeV), >4σ discrepancy with measured Higgs mass.

Prospects for ILC with Giga Z

prospects for direct ILC measurements

- Huge reduction of uncertainty on indirect determinations of m_t, m_W, and sin²θ^I_{eff}, by a factor of ~3.
- Assuming central values of m_t and M_W do not change, a deviation between the SM prediction and the direct measurements would be prominently visible.

Prospects for ILC with Giga Z

- For STU parameters, improvement of factor of >3 is possible.
- Again, at ILC a deviation between the SM predictions and direct measurements would be prominently visible.
- Competitive results between EW fit and Higgs coupling measurements!
 - [Note: model-dependency for Higgs coupling predictions from EW fit.]

Conclusion and Today's prospects

- CERN
- Including M_H measurement, for first time SM is fully over-constrained!
 - M_H consistent at 1.3 σ with indirect prediction from EW fit.
- p-Value of global electroweak fit of SM: 9% (pseudo-experiments)
 - Would be great to revisit $Z \rightarrow b\overline{b}$, both theoretically and experimentally
- Knowledge of M_H dramatically improves SM prediction of key observables
 - $M_W (28 \rightarrow 11 \text{ MeV})$, $\sin^2 \theta_{eff}^{I} (2.3 \times 10^{-5} \rightarrow 1.0 \times 10^{-5})$, $m_t (6.2 \rightarrow 2.5 \text{ GeV})$
- Improved accuracies set benchmark for new direct measurements!
- δM_W (indirect) = 11 MeV
 - Large contributions to δM_w from top and unknown higher-order EW corrections
- δM_W (direct) = 15 MeV

- Including new data electroweak fits remain very interesting in the next years!
- Latest results always available at: <u>http://cern.ch/Gfitter</u>