

γγ→WW and Anomalous Quartic Gauge Couplings at CMS

Jonathan Hollar (UCLouvain) For the CMS Collaboration

EPS-HEP July 19, 2013

Quartic Gauge Couplings

- Fundamental prediction of the Standard Model electroweak sector
- Deviations from predictions would indicate new physics typically parametrized in terms of Anomalous Quartic Gauge Couplings
- At the LHC, quartic couplings can be studied via:
 - Boson scattering for example
 γγ→WW
 - Tri-boson production for example WWγ, WZγ
 - Both types of analyses pursued in CMS

$\gamma\gamma \rightarrow WW$ at the LHC

- Large cross section for high-energy γγ interactions at the LHC
 - γγ→WW process has never before been observed

- In an untagged analysis protons may stay intact, or dissociate into an undetected low-mass system
 - Signal is the sum of both topologies: $pp \rightarrow p^{(*)}WWp^{(*)}$

γγ→WW analysis in CMS

- Search for γγ→WW performed using full 5fb⁻¹ collected at 7TeV during 2011
- Consider only $WW \rightarrow \mu e$ (+ neutrinos) final state for signal
 - Same flavor channels have much larger backgrounds use γγ→μμ as a control sample to constrain signal systematic and theory uncertainties
- "Exclusivity" defined by counting tracks on μe vertex – reduce sensitivity to pileup
 - Select events with 0 extra tracks and p_T(μe) > 30 GeV (SM signal region) and p_T(μe) > 100 GeV (AQGC search region)

$\gamma\gamma \rightarrow \mu\mu$ control samples

- Elastic-enriched selection with 0 extra tracks
 - Good agreement with predictions for γγ→μμ off the Z peak (LPAIR MC)
 - Use this sample to bound systematics from exclusivity, pileup modelling

- Proton dissociation-enriched selection
 - Expect larger discrepancies from rescattering corrections not included in the MC simulation
- Derive a total normalization factor for (elastic + proton-dissociation)/elastic from high-mass dimuon data

$$F = 3.23 \pm 0.53.$$

$\gamma\gamma \rightarrow WW \rightarrow \mu e$ backgrounds

 Background predictions are checked from sideband control regions in number of extra tracks and p_τ(μe)

Region	Background process	Data	Sum of backgrounds	$\gamma \gamma \to W^+W^- \text{ signal}$
1	Inclusive W^+W^-	43	46.2 ± 1.7	1.0
2	Inclusive Drell-Yan $\tau^+\tau^-$	182	256.7 ± 10.1	0.3
3	$\gamma\gamma \to \tau^+\tau^-$	4	2.6 ± 0.8	0.7

- Nominal background estimate: 0.84±0.15
- Consistent results obtained with several MC and data-driven (ABCD, same-sign events, tauembedding) methods

$\gamma\gamma \rightarrow WW$ signal region

- For the SM signal region with p_τ(μe)>30GeV:
 - Expected:
 - 2.2±0.4 (signal)
 - 0.84±0.15 (bkg)
 - Observed: 2 events
- Obtain a cross section times branching fraction and upper limit for a SM-like signal:

$$\sigma(pp \to p^{(*)}W^+W^-p^{(*)} \to p^{(*)}\mu^{\pm}e^{\mp}p^{(*)}) = 2.2^{+3.3}_{-2.0} \,\mathrm{fb},$$

$$\sigma(pp\to p^{(*)}W^+W^-p^{(*)}\to p^{(*)}\mu^\pm e^\mp p^{(*)})<10.6\,{\rm fb}.$$

AQGC search region

- For $p_T(\mu e) > 100 \text{ GeV}$ and 0 extra tracks
 - 0.14 events expected (SM)
 - 0 events observed

 Set a model-independent limit on the partial cross section times branching fraction

$$\sigma(pp \to p^{(*)}W^+W^-p^{(*)} \to p^{(*)}\mu^{\pm}e^{\mp}p^{(*)}) < 1.9 \,\text{fb}.$$

For
$$p_T(\mu,e) > 20$$
 GeV, $|\eta(\mu,e)| < 2.4$, $p_T(\mu e) > 100$ GeV

γγ→WW AQGC limits

- Interpret results in terms of LEP-like "dimension-6" γγWW AQGC's
 - Strong unitarity violation for high-energy $\gamma\gamma$ interactions give limits both with and without form factors (Λ = 500 GeV) to preserve unitarity

$$\begin{split} -0.00015 &< a_0^{\rm W}/\Lambda^2 < 0.00015\,{\rm GeV}^{-2}\ (a_C^{\rm W}/\Lambda^2 = 0, \Lambda_{\rm cutoff} = 500\,{\rm GeV}), \\ -0.0005 &< a_C^{\rm W}/\Lambda^2 < 0.0005\,{\rm GeV}^{-2}\ (a_0^{\rm W}/\Lambda^2 = 0, \Lambda_{\rm cutoff} = 500\,{\rm GeV}). \end{split}$$

Limits are ~100x beyond LEP, ~20x beyond Tevatron (with Λ =500GeV)

$$-4.0 \times 10^{-6} < a_0^W / \Lambda^2 < 4.0 \times 10^{-6} \,\text{GeV}^{-2} \ (a_C^W / \Lambda^2 = 0, \text{no form factor}),$$

 $-1.5 \times 10^{-5} < a_C^W / \Lambda^2 < 1.5 \times 10^{-5} \,\text{GeV}^{-2} \ (a_0^W / \Lambda^2 = 0, \text{no form factor}).$

No-FF limits are ~100x beyond Tevatron (with no form factor)

WZy and WWy at CMS

- New first LHC search for WV_γ tri-boson production (where V = W or Z decaying to dijets)
 - Analysis performed in the lepton + dijet + photon + missing E_T final state
 - Based on the full 20fb⁻¹ dataset collected at 8 TeV

- Cross section limits obtained are 3.4x the Standard Model prediction
- Photon p_T is used as the variable to set limits on AQGC's
 - For additional details see talk by Chia-Ming Kuo 10

WV AQGC limits

- Interpret results in terms of both dimension-6 and dimension-8 (linear) anomalous WWγγ and WWZγ couplings
 - No form factors used

- Limits on WWγγ couplings are significantly beyond Tevatron
- First limits on the (CP-conserving) $WWZ\gamma$ couplings κ_c^W , κ_0^W

Summary

- The investigation of quartic gauge boson couplings at the LHC is underway
- CMS has searched for γγ→WW production in the eμ final state using 5fb⁻¹ collected at 7 TeV
 - For the SM signal region with $p_T(\mu e)>30GeV$: 2 events observed, with 2.2±0.4 signal, 0.84±0.15 background expected
 - Limits on anomalous quartic $\gamma\gamma WW$ couplings are ~20-100x more stringent than previous results obtained at LEP/Tevatron
- CMS has searched for $WW\gamma$ and $WZ\gamma$ production in the lepton + photon + dijets + missing E_{τ} final state using 20fb⁻¹ collected at 8 TeV
 - Limits are set on the CP-conserving anomalous quartic $WWZ\gamma$ couplings κ_c^W , κ_0^W for the first time

arXiv:1305.5596, To appear in JHEP ($\gamma\gamma \rightarrow WW$) CMS PAS-SMP-13-009 ($WV\gamma$)

Additional material

Exclusive $\gamma\gamma$

- First search for exclusive diboson production at 7 TeV by CMS
 - Expected to be dominated by strong Central Exclusive Production
 - Based on 36pb⁻¹ collected in 2010
- 0 events observed limits set on exclusive plus quasi-exclusive pp→p(*)γγp(*)
 - Start to exclude upper end of theory predictions

$\gamma\gamma \rightarrow \parallel$

- Standard candle processes used to validate exclusivity selection
- Measured in both $\mu\mu$ and ee channels in 2010 data
- Reasonable agreement with LPAIR MC in shapes and normalization

Life with pileup

$\gamma\gamma \rightarrow \mu\mu$ control samples (I)

- Elastic-enriched selection with 0 extra tracks
 - Good agreement with predictions for γγ→μμ off the Z peak (LPAIR MC)
 - Use this sample to bound systematics from exclusivity, pileup modelling

- On the Z peak
 - Yields consistent with expected residual Drell-Yan background