Recent cross section, diffractive and forward multiplicity measurements with TOTEM

K. Österberg,
Department of Physics,
University of Helsinki & Helsinki
Institute of Physics

on behalf of **TOTEM collaboration**

EPS-HEP 2013 conference

- Introduction
- Elastic, inelastic & total pp cross-section
- Forward multiplicity in pp (w/o CMS)
- Soft (& hard) diffraction in pp (w/o CMS)

Experimental setup @ IP5

TOTEM

Roman Pots: elastic & diffractive protons (di-proton trigger)

Experimental setup @ IP5

Roman Pots: diffractive protons (di-proton trigger)

TOTEM

TOTEM

Soft pp processes

σ@LHC

Diffraction a large fraction of total pp crosssection!!

Measure σ (M,ξ,t)

Elastic pp scattering: selection & data sets

Selected based on topology, low |ξ|, collinearity, & vertex

Data sets at different conditions to measure elastics over wide t-range including very low |t|

Elastic pp scattering: cross-section @ 7 TeV

0.35

0.4

0.45

luminosity

0.1

0.15

0.2

0.25

total

0.05

-15

Extrapolation to t = 0: $d\sigma/dt = A e^{-Bt}$

A (mb/GeV²) =
$$506 \pm 23^{\text{syst}} \pm 0.9^{\text{stat}}$$

 $503 \pm 27^{\text{syst}} \pm 1.5^{\text{stat}}$
B (GeV⁻²) = $19.89 \pm 0.27^{\text{syst}} \pm 0.03^{\text{stat}}$
(fit range: $5 \cdot 10^{-3} < |t| < 0.2 \text{ GeV}^2$)
 $20.1 \pm 0.3^{\text{syst}} \pm 0.2^{\text{stat}}$
(fit range: $2 \cdot 10^{-2} < |t| < 0.33 \text{ GeV}^2$)

Elastic cross section $\sigma_{elastic}$

 $25.43 \pm 1.07^{\text{syst}} \pm 0.03^{\text{stat}}\,\text{mb}$ (91% measured)

 $24.8 \pm 1.2^{\text{syst}} \pm 0.2^{\text{stat}} \, \text{mb} \, (67\% \, \text{measured})$

TOTEM

Elastic pp scattering: implications

 $d\sigma/dt \sim e^{-B|t|}$ Increase of B slope with collision energy

$$B_{7\text{TeV}}$$
 = (19.89 \pm 0.27) GeV $^{-2}$ $B_{8\text{TeV}}$ = (19.90 \pm 0.30) GeV $^{-2}$

Elastic pp scattering: σ & very low-|t| @ 8 TeV

 $\sigma_{elastic}$ = 27.1 \pm 1.4 mb

Luminosity-independent

PRL 111 (2013) 012001

$$\beta^* = 1 \text{ km}$$
:

Access to Coulomb-hadronic interference term $\Rightarrow \rho$ (= \Re F^h/ \Im F^h|₀) & σ_{total} measurements

Elastic pp: Coulomb-hadronic interference

$$d\sigma/dt \propto |F^{C+h}|^2 = Coulomb + "interference" + hadronic from theory Modulus constrained by$$

Modulus constrained by measurement $e^{-B(t)}$ B(t) described by n > 1 parameters

Key elements considered:

- number of parameters to describe B(t)
- description of interference term: from simplified West-Yennie [1] formula to general Kundrát-Lokajícek [2] formula
- ψ phase of hadronic amplitude
 (t dependence not constrained by measurements): central or peripheral

$$\rho = 1 / \tan(\psi|_0)$$

Example: χ^2 fit with **K**undrát-**L**okajícek formula $B(t) \sim b_0 + b_1 t + b_2 t^2$ Central hadronic phase
All errors included

- [1] G. B. West and D. R. Jennie, Phys. Rev. 172 (1968)1413.
- [2] V. Kundrát and M. Lokajicek, Z. Phys. C 63 (1994) 619.

Elastic pp scattering: p measurement

$$ho = 0.107 \pm 0.027^{
m (stat)} \pm 0.010^{
m (syst)} \stackrel{+0.009}{\scriptscriptstyle -0.009} \stackrel{(model)}{\scriptscriptstyle -0.009}$$

Inelastic pp cross-section

- Count events with charged particles in T1 & T2 (~ 95 % of inelastic).
- Trigger: at least one track in T2.
- Corrections:
- beam-gas background (non-colliding bunches)
- trigger efficiency, pile-up, T1 only events (zero-bias)
- central diffraction unseen (PHOJET & MBR)
- Low mass diffraction @ M_{diff} < 3.4-3.6 GeV (tuned QGSJETII-03 to observed 1hemi fraction)

Source	Correction	Uncertainty
Beam gas	0.45 %	0.45%
Trigger Efficiency	1.2%	0.6%
Pile up	2.8%	0.6%
T2tion	0.35%	0.2%
T2 reconstruction	0.8%	0.4%
"T1 only"	1.2%	0.4%

 $0.4\,\%$

0.4%

4.8%

0.2%

0.35%

0.2%

2.4%

Internal Gap covering T2

Low mass diffraction (seen)

Central diffraction

Low mass diffraction

8 TeV

σ _{inel} (mb)	@ 7 TeV	@ 8 TeV
Direct	73.7 ± 3.4 EPL 101 (2013) 21003	
Indirect	73.15 ± 1.26 EPL 101 (2013) 21002	
$oldsymbol{\mathcal{L}}$ independent	72.9 ±1.5 EPL 101 (2013) 21004	74.7 ± 1.7 PRL 111 (2013) 012001

Total pp cross-section: methods & results

$$\sigma_{tot}^2 = \frac{16\pi}{(1+\rho^2)} \frac{1}{\mathcal{L}} \left(\frac{dN_{el}}{dt}\right)_{t=0} \begin{array}{l} \text{based of relastic} \\ \text{scattering} \Rightarrow \text{low} \\ \text{mass diffraction} \\ \text{in densation} \end{array}$$

based on elastic independent

 σ_{total} = 98.3 mb ± 2.0 mb EPL 96 (2011) 21002

 σ_{total} = 98.6 mb ± 2.3 mb EPL 101 (2013) 21002

$$\sigma_{tot} = \sigma_{el} + \sigma_{inel}$$

optical theorem & ρ independent σ_{total} = 99.1 mb \pm 4.3 mb EPL 101 (2013) 21004

$$\sigma_{tot} = \frac{16\pi}{(1+\rho^2)} \frac{(dN_{el}/dt)_{t=0}}{(N_{el}+N_{inel})} \ \ \mathcal{L} \ \text{independent}$$

 σ_{total} = 98.1 mb \pm 2.4 mb EPL 101 (2013) 21004

 σ_{total} = 101.7 mb \pm 2.9 mb 8 TeV PRL 111(2013) 012001

pp cross-section: summary

pp cross-section: implications

Luminosity & ρ independent ratios:

7 TeV

8 TeV

 $\begin{array}{lll} \sigma_{elastic} / \; \sigma_{total} = & 0.257 \, \pm \, 0.005 \; \; ; \; \; 0.266 \, \pm \, 0.006 \\ \sigma_{elastic} / \; \sigma_{inelastic} = 0.354 \, \pm \, 0.009 \; \; ; \; \; 0.362 \, \pm \, 0.011 \end{array}$

SD acceptance for T1+T2

Low mass diffraction (7 TeV):

 $\sigma_{\text{inelastic}, |\eta| > 6.5}$ = $\sigma_{\text{total}} - \sigma_{\text{elastic}} - \sigma_{\text{inelastic}, |\eta| < 6.5}$ = 2.62 \pm 2.17 mb

 $\sigma_{inelastic,\; |\eta| \; > \; 6.5} \leq$ 6.3 mb @ 95 % CL

Very forward dN_{ch}/dη @ 7 TeV

Measured with T2 on T2 triggered events (*EPL 98 (2012) 31002*) Visible inelastic cross-section ~ 93 %, diffractive events with $M_{diff} > 3.4$ GeV

Main contributions to systematic error ~10%:

- Subtraction of large secondary contribution
- Track efficiency & misalignment uncertainties (θ < 10 mrad!)

Very forward dN_{ch}/dη @ 8 TeV (with CMS!)

- Improved simulation of T2 response, secondary particles production, event selection strategy & alignment procedures.
- Uses of vertex information from CMS to reduce pile-up correction
- Better MC tuning to LHC measurements (important for estimation of secondaries)

TOTEM

- CMS & TOTEM analysis on same events trigger by T2 (~ 93 % of inelastic)
- Same CMS-TOTEM event selection (at least a "pointing" track in T2)
- For inelastic events with at least 1 primary charged particle with $p_T > 40$ MeV/c in $5.3 < |\eta| < 6.5$.

Very forward dN_{ch}/dη @ 8 TeV (with CMS!)

TOTEM

"Non-Single diffractive enhanced": primary tracks in both T2 hemispheres "Single diffractive enhanced": primary tracks in only one T2 hemispheres

NSD-enhanced SD-enhanced NSD-enhanced pp, $\sqrt{s} = 8 \text{ TeV}$ dN_{ch}/d|n| At least 1 charged particle Pythia8 4C with p_T>40 MeV in only Herwig++ EE3C Epos (LHC-Tune) one T2 hemisphere ⊕Pythia 8.108 (4C-Tune) ■TOTEM Data (8 TeV) Corrections & correlated systematics between CMS & TOTEM under study _ CMS (p₊>100 MeV) _ TOTEM (p_>40 MeV) $N_{ch}(p_{\star} > 40 \text{ MeV}) \ge 1 \text{ in } 5.3 < \eta < 6.5 \text{ and } -6.5 < \eta < -5.3$ Data / MC 8.0 5.6 5.8 6.2 6.4

Updated analysis with a common $p_T = 0$ thresholds ongoing in both CMS & TOTEM!

Soft single diffraction @ 7 TeV

Very high mass SD:

Tracks also in same T2 hemi-

sphere as proton ($\xi > 2.5\%$)

Low & medium mass SD:

Tracks in T2 hemisphere opposite to proton (2 *10⁻⁷ < ξ < 0.025)

- SD events triggered with T2, only 1 proton required in RP
- M_{diff} from rapidity gap based on charged particles in T1 & T2: $M_{diff} = \sqrt{s \cdot e^{-\Delta \eta}}$ allows better ξ resolution ($\delta(\xi)/\xi\sim1$) for low & medium M_{diff}
- SD events classified into 4 classes, based on rapidity gap:

SD class	Inelastic telescopes configuration	Mass	ξ
Low Mass	p + T2 opposite only (no T1)	3.4 - 8 GeV	$2 \cdot 10^{-7} < \xi < 10^{-6}$
Medium Mass	p + T2 opposite + T1 opposite	8 - 350 GeV	$10^{-6} < \xi < 0.25\%$
High Mass	p + T2 opposite + T1 same	0.35 - 1.1 TeV	$0.25\% < \xi < 2.5\%$
Very High Mass	p + both T2 arms	> 1.1 TeV	> 2.5%

TOTEM

RPs

Soft single diffraction @ 7 TeV

T1 T2

$d\sigma/dt \sim A \cdot e^{-Bt}$

Corrections included:

- Trigger efficiency
- Proton acceptance & reconstruction efficiency
- Background subtraction
- Extrapolation to t = 0

- Class migration
- _ ξ resolution & beam divergence effects

B ~ 15%; σ ~ 20%

Analysis of very high mass events ongoing

8 TeV SD analysis started

Medium mass

 $M_{diff} = 8 - 350 \text{ GeV}$

T2 T1

Soft double diffraction @ 7 TeV

TOTEM

Measurement of soft DD cross section with only particles visible in T2 (4.7 < $|\xi|_{min}$ < 6.5)

$$\sigma_{DD}(|\xi|_{min})$$
 for 3.4 < M_{diff} < 8 GeV

Event selection: Trigger with T2, at least one track in <u>both</u> T2 hemispheres, <u>no tracks in T1</u> "(0T1+2T2) topology".

- ND background estimated scaling MC prediction using a control sample from data dominated by ND (2T1+2T2 events)
- SD background estimated completely from data using a SD-dominated control sample (0T1+1T2) with protons in RP

Soft double diffraction @ 7 TeV

$$\sigma_{DD(4.7 < |\eta_{\min}| < 6.5)} = 120 \pm 25 \mu b$$

	-4.7>η _{min} >-5.9	$-5.9 > \eta_{min} > -6.5$
$4.7 < \eta_{min} < 5.9$	66±19 μb	27±5 μb
5.9<η _{min} <6.5	28±5 μb	12±4 μb

 σ_{DD} uncertainty dominated by:

"Internal migration": real DD events that have a $|\eta|_{min}$ smaller than T1 but with no tracks in T1 η -range

Pythia 8 $(\sigma_{DD} = 8.1 \text{ mb})$

$$\sigma_{DD(4.7 < |\eta_{\min}| < 6.5)} = 159 \text{ }\mu b$$

	-4.7>η _{min} >-5.9	-5.9>η _{min} >-6.5
4.7<η _{min} <5.9	70 μb	36 µb
5.9<η _{min} <6.5	36 µb	17 μb

Improvement expected with 8 TeV data sample that includes also CMS detector information.

Phojet

$$(\sigma_{DD} = 3.9 \text{ mb})$$

$$\sigma_{DD(4.7 < |\eta_{\min}| < 6.5)} = 101 \text{ }\mu b$$

	-4.7>η _{min} >-5.9	-5.9>η _{min} >-6.5
4.7<η _{min} <5.9	44 μb	23 μb
5.9<η _{min} <6.5	23 μb	12 μb

Central diffraction: TOTEM + CMS

CD (aka DPE):

Large η-coverage:

- CMS: -5.5<η<5.5
- T1: $3.1 < |\eta| < 4.7$
- T2: $5.3 < |\eta| < 6.5$
- FSC: $6 < |\eta| < 8$

Double-arm proton detection

Prediction of mass to be seen in CMS from reconstructed protons: $M^2 = s \xi_1 \xi_2$

Initial vs. final state comparison: M_{TOTEM} (pp) =? M_{CMS}

Prediction of central particle flow topology from proton ξ 's (rapidity gaps): $\Delta \eta_{1,2} = -\ln \xi_{1,2}$

Masses up to 1.8 TeV with pp survival!

Analysis on going.

Good statistics for soft central diffraction;

limited for hard central diffraction

TOTEM

Summary

Total pp cross-section

Diffraction: soft and hard

Forward particle production

Elastic pp scattering

The End

Elastic pp scattering: ρ measurement

Comparison of ρ with models and measurements at lower energy

$$\rho = 0.107 \pm 0.027^{\text{(stat)}} \pm 0.010^{\text{(syst)}} + 0.009^{\text{(model)}} - 0.009^{\text{(model)}}$$

SD cross-section comparison

Courtesy N. Cartiglia

NB! TOTEM measures "p+rap gap + diffractive system", ALICE & CMS "rap gap + diffractive system"

Central diffraction: TOTEM + CMS

η

Cuts:

- Vertex ≤ 1
- RP near edge area removed (background suppression)
- RP top-top/bot-bot topology
- ξ> 1.5%, better resolution
- FSC empty (background suppression)

Categories of events:

CMS and TOTEM consistent (within resolution)

$$M_{CMS}(Particle Flow) = M_{TOTEM}(pp)$$

 $p_{CMS}(Particle Flow) = p_{TOTEM}(pp)$

→ Many candidates in the soft sample Few candidates in the dijet sample; none exclusive!

- Missing "tracks" in CMS
 M_{CMS}(Particle Flow + missing momentum) ≤ M_{TOTEM}(pp)
- ➤ Additional tracks indeed observed in forward detectors where allowed by x-predicted gaps
- → Large fraction of soft events Several candidates in the dijet sample
- ➤ Secondary particles violating rapidity gaps
- → No candidates in the dijet sample; Background issue in the soft sample

➤ escaping-mass candidates

Additional tracks NOT observed in forward detectors where allowed by x-predicted gaps \rightarrow few candidates with $\Delta M \ge 400$ GeV

Additional tracks NOT observed in forward detectors forbidden by x-predicted gaps

→ no candidates

RP system: LHCC endorsed program

On going studies to implement high beta optics with 1000 bunches Pileup ≈ 0.09 ; L $\sim 10^{31}$ cm² s⁻¹ \rightarrow 1 pb⁻¹/day

- forward proton detector system will consist of 4 units/arm, each with 2 vert. and 1 horiz., pot equipped with 10 planes Si-strip detectors, with full trigger capability
- Extreme flexibility in using 4 units according to running scenario; possibility to dedicate pots to new **Si-pixel detectors** as well as to timing detectors with low material budget