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Introduction

Despite the successes of the Standard Model, we still have no clear explanation on how quarks and gluons
form nucleons and nuclei. The Skyrme Model provides an alternative. It is a low-energy QCD effective meson
field theory where baryon emerges as topological solitons. However, the Skyrme Model seems unable to reproduce
the small binding energy in nuclei although it remains a relatively accurate picture of the nucleons. This suggests
that Skyrme-like models that nearly saturate the Bogomol’nyi bound may be more appropriate since their mass is
roughly proportional to the baryon number.

We propose a Near-BPS Skyrme Model[5]. It consists of terms up to order six in derivatives of the pion
fields, including the nonlinear and Skyrme terms which are assumed to be relatively small. Our special choice of
mass term leads to well-behaved analytical BPS-type solutions with approximately constant baryon density
configurations, as opposed to the usual shell-like configurations found in most extensions of the Skyrme Model.
Fitting the 4 model parameters, we find a remarkable agreement for the binding energy per nucleon B/A with
respect to experimental data.

Motivation

In the absence of a clear explanation on how quarks and gluons form nucleons and nuclei form the Standard
Model, one has to rely on alternative approaches. One of the most attractive ideas in that regard is the Skyrme
Model[1], an effective meson (pion) field theory motivated by low-energy QCD arguments such as 1/Nc expansion
or more recently holographic QCD[2]. In the Skyrme Model, the baryon and nuclei emerge as topological solitons
(Skyrmions). This is somewhat odd since the model is usually constructed out of pion fields alone.

The Skyrme Model is relatively successful at describing pion and baryon physics with predictions that are an
accurate to at least 30% (often to a few %) with regard to experimental data. However, it fails when it comes to
multibaryon physics or more precisely nuclei. For instance, the binding energies are much too large especially for
small nuclei ( e.g. deuteron ' 40 × observed value). Moreover, finding the lowest energy configurations is
numerically challenging so that only small A solutions are known. They lead to approximately toroidal,
tetrahedral, cubic configurations for A = 1, 2, 3 standard Skyrmions, respectively,

A = 2 A = 3 A = 4

This is in contradiction to the constant densities observed in nuclei. Further analysis of various potential (mass)
terms, rotational deformations, higher order terms in derivatives or additional mesons (e.g. ω, ρ, ...) lead to
similar configurations and binding energies

Given that the mass of the nuclei are closely proportional to that of the nucleon, Mnuclei ≈ A ·Mnucleon, and
that BPS-solitons follows this exact pattern, we propose a Skyrme-like model in a regime where the solutions are
Near-BPS solitons. We further adjust the model so as to obtain a constant baryon density. This lead to a
so-called Near-BPS Model

Near-BPS Model

In order to get closer to saturation of Bogomol’nyi bound without losing link with the Skyrme model, we
consider an extension of the original Skyrme Model with the Lagrangian density

LNBPS =L0 + L6︸ ︷︷ ︸
BPS-solitons

+ L2 + L4︸ ︷︷ ︸
Skyrme

(1)

We then assume that L0 + L6 dominate and treat L2 and L4 are small as perturbations. The terms are
respectively:

I L0 = −µ2V (U) : the potential term (χSB term) which is responsible the pion mass.

I L2 = −αTr[LµL
µ] : the quadratic NLσ term.

Here, Lµ = U †∂µU where the pion fields are introduced through the SU(2) matrix U = φ0 + iτiφi with
φ2

0 + φ2
i = 1.

I L4 = βTr
(

[Lµ, Lν]
2
)

: the quartic Skyrme term (necessary to stabilize soliton in the Skyrme Model).

I L6 = −3
2
λ2

162Tr
(
[Lµ, Lν]

[
Lν, Lλ

]
[Lλ, Lµ]

)
: the sextic term which remains quadratic in time derivatives.

Finite energy solutions for the Skyrme fields are characterizes by a conserved topological charge which
Skyrme identified as the baryon number or mass number A in the context of nuclei

A =

∫
d3rB0 = − εijk

24π2

∫
d3rTr (LiLjLk) . (2)

When α, β = 0, the solutions are BPS-solitons so their masses are exactly proportional to A.
This allows us to choose an axially symmetric solution for U in the limit where α = β = 0

U = cosF (r) + in̂ · τ sinF (r) (3)

where n̂ is the unit vector can be written in terms of the spherical coordinates r, θ, and φ.

n̂ = (sin θ cosAϕ, sin θ sinAϕ, cos θ) . (4)

Method

The model has evolve over the last few years:
1- Adam et al [ASW][3]: consists of L0 + L6 alone (α = β = 0) with usual mass term
V (U) = −1

2Tr[I − U ] = −1
2Tr[U−] where U± = (2I ± U ± U †)/4 The solutions are compactons. They saturate

the Bogomol’nyi bound leading to zero binding energies and unstable nuclei.
2- Near-BPS Model [BoM][4]: The choice of potential VBoM(U) = −1

2Tr
[
U+U

3
−
]

gives baryon density with
unsatisfactory shell-like configuration.

3- Other Near-BPS Model [BHM][4]: With VBHM(U) = −4
9

Tr[U+U
3
−]

ln(1
2Tr[U−])

, the baryon density is gaussian-like

We are interested in a model that can reproduce the constant baryon density in nuclei. We propose an
”Improved the Near-BPS Model [BeM]”.

An Improved the Near-BPS Model [BeM][5]:

Our approach proceeds through of the following steps:
Step 1: Introduce an appropriate V (U), here

VBeM(U) =
112

45
Tr
[
U+U

3
−
] (1− (14/5) ln (Tr [U−] /2))

1−
√

1− (14/5) ln (Tr [U−] /2)
(5)

in order to generate constant baryon density.
Step 2: Find the analytical solution (α = β = 0) where x = ar with a = µ/ (18Aλ)

FBeM(x) = π − 2 arccos[exp

(
−x2 − 7

5
x4

)
] (6)

The proposed model with VBeM(U) leads to a constant baryon density.
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Figure : Baryon densities B0(x) for various models: compacton [ASW], shell-like
configuration [BoM], gaussian-like density [BHM] and the constant baryon density
Near-BPS model [BeM].

Step 3: Relax the constraint α, β = 0 and include L2 +L4 as small perturbations. The static energy then reads

Es = 15.93 µλ A +
8πα

a

(
2.6880 + 0.4850

(
1 + A2

))
+ 64πβa

(
5.138

(
1 + A2

)
+ 1.882A2

)
Step 4: Add the rotational energy

Er =
1

2

[
j(j + 1)

V11
+
i(i + 1)

U11
+

(
1

U33
− 1

U11
− A2

V11

)
κ2

]
where U33, U11, V11 are (iso)rotational moments of inertia.

Step 5: Add Coulomb energy EC from charge density ρ(x) = J0
EM ≡ 1

2B
0(x) + i3

U33(x)
U33

.
Step 6: Add isospin breaking term EI to account for proton-neutron mass difference using EI = aIi3 with
aI = (En

C − E
p
C)−∆M expt

n−p
Step 7: The values of the parameters µ, α, β and λ remain to be fixed. This is done by fitting these 4
parameters using our result for the nuclear mass:

Et = Es + Er + EC + EI (7)

Once these parameters are fixed the masses and binding energies per nucleon can be predicted for all nuclei.

Results

We first consider the case where α = β ∼ 0 which provides a good estimate for the values of µ, α, β, and λ
required in the 4-parameter model (1) and corresponds to the limit where the minimization of the static energy
leads to the exact analytical BPS solution in (6). For simplicity, we choose the mass of the nucleon and that of a
nucleus X with no (iso)rotational energy; the best choice turns out to be the nuclei H and 40Ca (Fit I). A second
fit is performed using the masses of 140 most stable isotopes (Fit II). Finally, we optimize for the binding energy
per nucleon B/A with the same set of 140 most stable isotopes (Fit III).

Fit I Fit II Fit III

µ (104 MeV2) 1.232 1.0226 1.3264
α (10−3 MeV2) 0 1.48244 0.00016580
β (10−8 MeV0) 0 1.20427 0.00091319
λ (10−3 MeV−1) 4.741 5.7037 4.3991

The masses of the nuclei including static, (iso)rotational, Coulomb, and isospin breaking contributions are
then computed using Eq. (7) which results in predictions that are accurate to at least 0.8% for the masses, even
for heavier nuclei, and within 10% for binding energy per nucleon B/A. The predictions remain surprisingly good
compared to that of the Skyrme model which overestimates the B/A by at least an order of magnitude.

Results...

The results are presented in the next figure which displays the general behavior of B/A as a function of the
baryon number for our model [BeM].

ççç

ç

ç
ç

ç

ç
ç

çç

ç

ç
çç

ç
ç
ççç

çççççççççççççççççççççççççççççççççççççççççççççççççççççççççççççççççççççççççççççççççççççççççççççççççççççççççççççççççççççç çççççççç

0 50 100 150 200

0

2

4

6

8

10

Baryon number A

B
�A

HM
eV

�nu
cl

eo
nL

ç Expt

III

II

I

Figure : Binding energy per nucleon B/A as a function of the baryon number for
model [BeM] using the parameters of Fits I, II, III, compared with experimental
values.

The mass of each nucleus gets a contribution from static, (iso)rotational, Coulomb, and isospin breaking
energies. It is interesting to compare how these contributions affect binding energy per nucleon B/A. While they
emerge from a low-energy QCD effective meson field theory, the results are similar to that of the more empirical
Bethe-Weizsäcker mass formula.
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Figure : Contribution to the binding energy per nucleon B/A coming from the
static, (iso)rotational, Coulomb, and isospin breaking for Fits III, compared with
experimental values.

The predicted masses (Fit III) are accurate to at least ±0.4% with respect to the experimental values.
Further analysis required:

I The size of nuclei or root mean square radius for the charge density is, as observed, proportional to A
1
3 but is

slightly too large:
〈
r2
em

〉1
2 = (1.91 fm)A

1
3 (Expt= (1.23 fm)A

1
3).

I The rotational energy is small especially for large nucleus. It would imply for example that the mass difference
between the ∆ and the nucleon is M∆ −MN ∼ 50 MeV

I The model assumes that the parameters α, β are small in the Near-BPS approach. Since the pion decay
constant is Fπ = 4

√
α� 186 MeV mπ = µ

√
2/α� 138 MeV , the link to soft-pion physics is yet unclear

I Several aspects of the model (e.g. magnetic moments, vibrational and rotational excitations....) remain to be
studied.

Conclusion

The model includes both the NLσ terms and the Skyrme term in order to retain some of the successes of the
Skyrme Model which is not the case for some pure BPS Skyrmion. Since the potential and the term of order 6 in
derivatives dominate, it is possible to approximate the lowest energy solution by an analytical axial form. This
allows computing most of the relevant physical quantities contrary to the original Skyrme Model where it remains
a challenge to even find the lowest energy solution.

We have demonstrated that it is possible to construct constant baryon and charge densities for all A.
Although it remains a prototype model, it leads to a remarkably accurate description of B/A and other properties
of the nuclei. More generally, it clearly supports the idea that nuclei could be Near-BPS Skyrmions.
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