EPS-HEP 2013 Stockholm, 17-24 July 2013

Measurement of charm production in DIS and extraction of F_2^{cc} with ZEUS

Massimo Corradi (INFN Bologna), on behalf of the ZEUS Collaboration

-Introduction

- D*

- D*

- jet vertices
- extraction of $\sigma_{red}^{c\bar{c}}$ and $F_{2}^{c\bar{c}}$
- conclusions

Introduction

 Charm production in DIS LO : Boson-gluon fusion (BGF)

- Access to g(x)
- Sensitivity to m_c
- Test of general-mass variable-flavour-number schemes GM-VFNS used in global PDF fits

- HERA combined data: sensitivity on HQ scheme and m_c (see talk by K. Lipka)
- · Can we improve it ?

ZEUS data

- ZEUS Total physics luminosity 0.5 fb⁻¹
- HERA-I : 1992-2000
- HERA-II: 2003-2007

Charm production measurements in DIS:

Included in HERA combination:

- HERA-I data: D* L= 119 pb⁻¹
- '05 e⁻p data: D⁰, D^{+,} μ L= 134 pb⁻¹

NEW (this presentation):

- HERA-II D* (JHEP05(2013)097) L= 363 pb-1
- HERA-II D⁺ (JHEP05(2013)023) L= 354 pb⁻¹
- Inclusive lifetime tagging (ZEUS-prel-12-002) L=354 pb⁻¹
- --> factor 3 increase in luminosity for D*, D*
 + new method

D**/- channel

"Golden" decay channel: D*+ -> π + D⁰ (-> K π+)

Kinematic range:

- 1.5 < p_τ(D*) < 15 GeV, |η(D*)| < 1.5
- 5 < Q² < 1000 GeV², 0.02 < y < 0.7

Bkg estimated from fit to wrong-sign and correct-sign sidebands.

Rapgap MC, reweighted in η , p_{T} , Q^{2} used for acceptance corrections

Syst. uncertainty: total ~5% (depending on bin, increasing at low y and low p_{T}) Including:

- track efficiency (~2%),
- signal extraction (~2.5%),

- MC modelling (~3.5%),

Normalization: Lumi (±1.9%), BR (±1.5%)

D*^{+/-} channel

- Differential cross sections in "visible" fiducial region, after QED radiative corrections.
- Compared to HVQDIS fixed flavour-number scheme (FFNS) NLO prediction and Rapgap LO MC

Hvqdis parameters:

 $m_c = 1.5 \pm 0.15 \text{ GeV}$ $\mu_f=\mu_r=\sqrt{Q^2+4m_c^2}$ (varied independently by 2, 1/2) $\alpha_s^{n_f=3}(M_Z) = 0.105 \pm 0.002.$

HERAPDF1.0 (FFNS variant)

Charm fragmentation-function: Kartvelishvili, scale dependent, fit to ep mesurements

D-meson fragmentation fractions: from average of e⁺e⁻ and ep data

- Data agree well with FFNS NLO
- Z^{D^*} = fraction of γ^* momentum taken by the D* between Hvqdis and Rapgap (sensitive to fragment.)

ηD

D^{+/-} channel

- Decay channel: D⁺ -> K⁻π⁺π⁺
- Kinematic range $1.5 < p_T(D^+) < 15 \text{ GeV}, |\eta(D^+)| < 1.6$ 5<Q2<1000 GeV2, 0.02<y<0.7
- Cut on decay length significance $S = L_{xy} / \sigma_{xy} > 4$
- Signal extraction from fit
- Typical syst. uncertainties 5-7%

Differential cross sections vs Q², y

- D+ and D* agreement with HVQDIS
- Both on the upper side of theoretical uncertainty band

Double differential cross sections in Q², y

5 < Q² < 100 GeV²

- Cross sections are mesured in bins of y and Q²
- Agreement with H1 HERA-II data, similar precision (see also K. Lipka's talk)

Double differential cross sections in Q², y

100 < Q² < 1000 GeV²

- Cross sections are mesured in bins of y and Q²
- Agreement with H1 HERA-II data, similar precision (see also K. Lipka's talk)

Jet vertices : method

10 12

S⁺-S

Charm and beauty jet tagging

Jets with $E_T > 4.2 \text{ GeV} (k_T, \text{ massive})$

Flavour decomposition based on "jet vertex" from tracks in cone ΔR <1 with p₁>0.5 GeV, exploiting

- decay length significance $S=L_{xy}/\sigma_{xy}$
- vertex mass M_{vtx}

"mirrored" significance to reduce resolution effects

Large statistics compared to D mesons

S*-S

S⁺-S

Jet vertices : results

ZEUS

 Charm jet cross sections: result on upper side of HVQDIS prediction (with jet hadronization corrections from Rapgap)

- Used also to extract F₂^{cc}

ZEUS

Extraction of reduced cross section σ_{red}^{cc}

Reduced charm cross section σ_{red}^{cc} and the structure functions F_2^{cc} , F_L^{cc} are defined Similarly to the inclusive case but for events with charm in the final state:

$$\frac{d^2 \sigma^{c\bar{c}}}{dx \, dQ^2} = \frac{2\pi \alpha_{em}^2}{xQ^4} \, Y_+ \, \sigma_{\rm red}^{c\bar{c}}(x, Q^2, s), \qquad Y_+ = 1 + (1-y)^2$$

$$\sigma_{\rm red}^{c\bar{c}}(x,Q^2,s) = F_2^{c\bar{c}}(x,Q^2) - \frac{y^2}{Y_+} F_L^{c\bar{c}}(x,Q^2),$$

Obtained from cross section in visible phase space (σ_{vis}) in a [y,Q²] bins as

$$\sigma_{\rm red}^{c\bar{c}}(x,Q^2) = \left(\sigma_{\rm vis} - \sigma_{\rm vis}^{\rm beauty}\right) \left(\frac{\sigma_{\rm red,\,HvQDIS}^{c\bar{c}}(x,Q^2)}{\sigma_{\rm vis,\,HvQDIS}}\right)$$

beauty contribution taken from Rapgap MC normalized to ZEUS measurements.

The method accounts for the extrapolation to full phase space, D* phase-space acceptances of ~50%, from 17% (low-y) to 64% (high-Q₂).

Theoretical uncertainty obtained from the variation of HVQDIS and fragmentation parameters.

Reduced cross sections: results

Reduced cross sections
 For D* and D⁺
 compared to
 HERA charm combination
 Including previous data

 Error bars: inner = stat+syst. outer = stat.+syst.+theo.

- Good agreement of three sets
- Precision of single measurements comparable to combined data in some bins.

Comparison with HERAPDF1.5

- D* results compared to prediction from the HERAPDF1.5 PDF fit to inclusive HERA data
- Prediction at based on the GM-VFNS Roberts-Thorne heavy-flavour scheme at NLO
- Consistent description of charm and inclusive data
- Theory uncertainty band: - m_c +- 0.15 GeV - PDFs
 - (no scale variation included)

Conclusions

- New measurements of charm production in DIS from ZEUS : D*, D⁺ and jet vertices
- Agreement with NLO predictions in FFNS (HVQDIS) and in the GM-VFNS (HERAPDF1.5)
- Improvement with respect to previous ZEUS result expected reduction on HERA combined charm data of $\sim 1/\sqrt{2}$

BACKUP SLIDES

Fragmentation

To produce visible D*, D cross sections from Hvqdis a fragmentation model is used:

- Longitudinal fragmentation function : Kartvelishvili with variable $\alpha_K(\hat{s})$ $\hat{s} = \gamma^* g$ cms energy squared, same model as used for HERA charm combination
- D meson fragmentation fractions from e⁺e⁻ and ep measurements

New measurement of charm frag. Fractions (not yet included in e⁺e⁻ and ep average) :

Heavy quark production in DIS

Fixed Flavour Number Scheme (FFNS)

- nf=3 active flavours in p
- heavy-quarks produced in hard scattering
- mass effects correctly included

Variable Flavour Number Scheme(s) (VFNS)

- c, b massless partons for Q²>m²_c

- simplifies calculations at colliders (neglecting m_)
- resums large log(Q²/m²)
- Zero Mass (ZM) VFNS
 - neglects m at all Q2s
- General Mass (GM) VFNS
 - FFNS at Q²<m²_c, ZM-FNS at Q²>>m²
 - Interpolating in between
 - different prescriptions available

More plots from D* analysis

 F_2^{cc} from jet vertex decay length

21

F^{bb}₂ from jet vertex decay length

22