

European Physical Society Conference on High Energy Physics 2013

Roger Caminal Armadans, on behalf of the ATLAS Collaboration

*The results shown in this poster have been documented as ATLAS-CONF-2013-068 available at http://atlas.web.cern.ch/

Introduction

Supersymmetry (SUSY) is a theoretical favored candidate for physics beyond the Standard Model (SM) which naturally solves the hierarchy problem and provides a possible candidate for dark matter in the Universe.

In scenarios for which $\Delta m = m_{\tilde{t}} - m_{\tilde{\chi}_1^0} < m_b + m_W$, the stop decay into a charm quark and the lightest supersymmetric particle, $\tilde{t} \to c + \tilde{\chi}_1^0$, may be the dominant decay process.

Two different approaches are used depending on Δm : • For small Δm , the transverse momenta of the two charm jets is too low to be reconstructed. A monojet

- analysis strategy is followed, making use of the presence of initial-state radiation jets to identify signal events.
- For **moderate** Δm the charm jets receive a large enough boost to be detected. Therefore charm tagging is used to enhance the SUSY signal.

Charm tagging

Jets are identified as originating from the hadronization of a charm quark via a dedicated algorithm using **multivariate techniques**. The algorithm provides three weights, one for lightflavor quarks and gluon jets, one for charm jets and one for b-jets, from which the anti-b, $log(P_c/P_b)$, and anti-u, $log(P_c/P_u)$, discriminators are calculated. Two operating points are used:

	c-tag eff.	b-rejection	light-rejection	au-rejection
lium se (as b-veto)	$20\% \\ 95\%$	$5\\2$	140 -	10 -

Electro-weak background

The production of Z and W bosons in association with jets is the main source of background. Its $\frac{1}{29}$ contribution to the total background is 94% and $\stackrel{\circ}{\cong}$ 10⁴ 63% for the monojet-like and charm-tagged $\frac{1}{2}$ analyses respectively. Samples of SHERPA MC events are normalized with data-driven scale factors retrieved in $W(\rightarrow ev)$ +jets, $W(\rightarrow \mu \nu)$ +jets and $Z(\rightarrow \mu \mu)$ +jets control samples, defined separately to normalize the different background processes. As an example, the figure \sum_{σ} shows the distribution of the transverse mass of the W boson in the W($\rightarrow \mu \nu$)+jets control sample \ddot{a} for the MI selection.

Solenoid magnet | Iransition radiation tracke Muon chambers Semiconductor tracke

Event selection

Selection criteria					
n M1	Charm-tagged selection C1				
luirements	Primary vertex, jet quality requirements				
	and lepton vetoes				
V and $ \eta < 2.8$	At least three jets with $p_T > 30$ GeV and $ \eta < 2.5$				
	(in addition to the leading jet)				
	b-veto for second and third jet				
	medium c-tag for fourth jet				
	$\Delta \phi(ext{jet}, p_T^{ ext{miss}}) > 0.4$				
280	270				
220	410				
	SelectionnM1[uirements]V and $ \eta < 2.8$ 280220				

Top background

The top quark background in the charm-tagged analysis is $\frac{2}{3}$ estimated in a separate control $\frac{10}{2}$ region in which c-tagging is $\frac{1}{6}$ replaced by b-tagging by inverting the b-veto criterion. It's contribution to the total background is 24%. In the case of the monojet-like analysis, the top quark $\overline{\delta}$ production process is small (about 2%) and is entirely determined from MC.

Top control region for CI

Systematic uncertainties

Different sources of systematic uncertainties are considered in the analysis: the absolute jet pT and the ETmiss energy scale and resolution, the pileup corrections, the lepton identification efficiencies, the modeling of parton showers and hadronization in the simulation, the b-veto and medium c-tag efficiencies (only in the c-tagged analysis), and the uncertainties on the control samples used to constrain the W/Z + jets contributions. This leads to a total systematic uncertainty of 3.2% for the monojet-like analysis and a 24% uncertainty for the c-tagged analysis.

Other backgrounds

- •The **multijet background** is estimated in a data-driven way. It constitutes less than 1% of the total background in the monojet-like selection and it is negligible in the charm-tagged case.
- •The **dibosons** contribution to the total background is 3% and 7% for the monojet-like and the charm-tagged analyses, respectively, and is determined from MC.
- •The **non-collision background** is estimated in a data-driven way and it's found to be negligible in both selections.

Limits

The results are translated into 95% CL limits on the SUSY stop pair production as a function of the stop mass for different neutralino masses.

Experimental uncertainties on the signal vary between 2% and 10% in the monojet-like selection, and between 8% and 29% in the charm-tagged selection, depending on the stop and neutralino masses.

Results

Good agreement is observed between the data and the Standard Model prediction.

Signal Region	M1	C1
Observed events (20.3 fb^{-1})	30793	25
SM prediction	29800 ± 900	29 ± 7

Renormalization and $\sum_{350} \frac{\tilde{t}_1 \tilde{t}_1 \text{ production}}{\tilde{t}_1 \tilde{t}_1 \text{ production}}, \tilde{t}_1 \rightarrow c + \tilde{\chi}_1^0$ factorization scales, PDF 🖑 uncertainties and 2300 variations in α_s result in a theory uncertainty between 14% and 16%. Masses for the stop up to 200 GeV are excluded at 95% CL for arbitrary neutralino masses, while for neutralino masses of

about 200 GeV, stop

masses below 230 GeV

are excluded at 95% CL.

