

Latest results of the MEG experiment

Fabrizio Cei INFN & University of Pisa On behalf of the MEG Collaboration EPS-HEP Conference, Stockholm, 18-24 July 2013

- Lepton Flavour Violation (LFV)
- The MEG Experiment
- Re-analysis of 2009/2010 Data
- Analysis of 2011 Data and combined results
- Impact on Beyond Standard Model Physics (BSM)
- Summary and Perspectives

LFV 1)

- In the SM of electroweak interactions, leptons are grouped in doublets and there is no space for transitions where the lepton flavour is not conserved.
- However, lepton flavour is experimentally violated in neutral sector (neutrino oscillations) ⇒ needed to extend the standard model by including neutrino masses and coupling between flavours.
- CLFV indicates non conservation of lepton flavour in processes involving charged leptons.

Including neutrino masses and oscillations in SM:

Huge rate enhancement in all SM extensions \Rightarrow **predicted rates experimentally**

⇒ Observation of cLFV clear evidence for physics beyond SM 19 July 2013
Fabrizio Cei

 $\tau \rightarrow \mu \gamma vs \mu \rightarrow e \gamma < 2013$

Blankenburg et al. Eur. Phys. J. C72 (2012) 2126

Antusch et al. JHEP 0611 (2006) 090

MEG 2011 = PRL 107 (2011) 181201

 θ_{13} recently measured by Daya Bay, Reno, Double Chooz ... $(7 \div 10^{\circ})$

19 July 2013

Goal: search for $\mu^+ \rightarrow e^+ \gamma$ decay with a sensitivity on BR $\leq 10^{-13}$

19 July 2013

Signal and background

Signal, RMD $\propto R_{\mu}$, ACC $\propto R_{\mu}^2 \Rightarrow$ > ACC is dominant (x 10 RMD in signal region); > needed continuous beam and accurate choice of R_{μ} ; > needed high precision experiments.

19 July 2013

The Paul Scherrer Institute (PSI)

- The most powerful continuous machine (proton cyclotron) in the world;
- Proton energy 590 MeV;
- Power 1.4 MW;
- Nominal operational current 2.2 mA.

MEG beam line (πE5 secondary muon line):

Wien filter
Beam transport solenoid (BTS)
Muon degrader
2-d beam spot on target: ~ (1 x 1) cm²

19 July 2013

19 July 2013

Summary of MEG performances

	2009	2010	2011	Note
Gamma E [%]	1.89	1.90	1.65	Effective sigma (averaged on event depth)
Relative timing T _{ey} [ps]	160	130	140	RMD with $E_{\gamma} < 48 \text{ MeV}$
Positron E [keV]	306(86%)	306 (85%)	304 (86%)	Michel edge, core resolution
Positron θ [mrad]	9.4	10.4	10.6	Double turn
Positron ϕ at zero [mrad]	8.7	9.5	9.8	Double turn
Positron Z/Y [mm]	2.4/1.2	3.0/1.2	3.1/1.3	Double turn, Y core resolution
Gamma position [mm]	5 (transvers) 6 (depth)	5 (transverse) 6 (depth)	5 (transverse) 6 (depth)	π^0 measurement with lead collimators
Trigger/DAQ efficiency [%]	91/75	92/76	97/96	
Gamma efficiency [%]	63	63	63	π^0 sample
Positron efficiency [%]	43	36	36	From MC
19 July 2013	F	abrizio Cei	10	

MEG data sample

on target

Number of μ^+

Previous result: (PRL **107** (2011) 181201)

BR ($\mu \rightarrow e\gamma$) < 2.4 x 10⁻¹² @90% C.L.

Data sample: 1.75×10^{14} stopped $\mu^+(2009 + 2010)$

Total data sample: 3.6 x $10^{14} \mu^+$

Hardware improvements in 2011:

- NaI replaced by BGO for π^0 measurements
- Laser tracker system for DCH/target alignment
- Multiple buffer readout

19 July 2013

Reconstruction improvements

γ-side:

7% higher signal efficiency

Number of events / (0.5 MeV) 104 102 105 raw energy with old pileup elimination with present pileup elimination background spectrum 10_{45} 50 55 60 E_{γ} (MeV)

e⁺-side:

52

New algorithms applied to: - reanalyze 2009-2010 sample; - process data collected in 2011

19 July 2013

Fabrizio Cei

56

E (MeV)

MEG analysis

Likelihood + Blind (only 2011) analysis

MEG likelihood analysis

Most dangerous

background is measured !

- Maximum likelihood analysis to extract Nsignal
 - Observables: E_γ, E_e, T_{eγ}, θ_{eγ}, Φ_{eγ}
 - PDFs are formed mostly from data.
 - Signal: Measured resolutions
 - Accidental BG : Measured spectrum in sidebands
 - RMD: Theoretical spectrum smeared by detector resolutions
- Different likelihood analyses performed to check systematics
 - PDF: Event-by-event PDF, different PDFs according to tracking quality, averaged PDF
 Likelihood function

$$\mathcal{L}(\vec{x}_{1},\ldots,\vec{x}_{N},R_{\diamond},A_{\diamond}|\hat{S},\hat{R},\hat{A}) = \frac{e^{-\hat{N}}}{N!}e^{-\frac{1}{2}\frac{(A_{\diamond}-\hat{A})^{2}}{\sigma_{A}^{2}}}e^{-\frac{1}{2}\frac{(R_{\diamond}-\hat{R})^{2}}{\sigma_{R}^{2}}}\prod_{i=1}^{N}\left(\hat{S}s(\vec{x}_{i})+\hat{R}r(\vec{x}_{i})+\hat{A}a(\vec{x}_{i})\right)$$

Background rate constraints
Distribution Function
19 July 2013
Fabrizio Cei

Median upper bound of a sample of toy MC experiments generated with zero signal hypothesis using the measured background pdf's.

Median $(2009 - 2010) = 1.30 \times 10^{-12}$ (1.6 x 10⁻¹² in previous analysis, 20% improvement) Median $(2009 - 2011) = 7.7 \times 10^{-13}$ 10^{-13} level reached !

19 July 2013

Re-analysis of 2009-2010

2011 and 2009-2011 analysis

2009-2011 likelihood fit

Confidence level

Frequentistic analysis, Feldman-Cousins method

BR ($\mu \rightarrow e\gamma$) < 5.7 x 10⁻¹³ (90% C.L.) factor 4 improvement !

Data set	$\mathcal{B}_{\mathrm{fit}} imes 10^{12}$	$\mathcal{B}_{90} imes 10^{12}$	$\mathcal{S}_{90} imes 10^{12}$
2009-2010	0.09	1.3	1.3
2011	-0.35	0.67	1.1
2009-2011	-0.06	0.57	0.77

Summary of all samples

Result published in PRL 110 (2013) 201801

19 July 2013

$\tau \rightarrow \mu \gamma vs \mu \rightarrow e \gamma NOW$

Blankenburg et al. Eur. Phys. J. C72 (2012) 2126

Antusch et al. JHEP 0611 (2006) 090

 θ_{13} recently measured by Daya Bay, Reno, Double Chooz ... $(7 \div 10^{\circ})$

C

Final data and sensitivity

Number of $\mu^+ \rightarrow e^+\gamma$ events = (k factor) x BR ($\mu^+ \rightarrow e^+\gamma$)

19 July 2013

Summary and Perspectives

- ➤ The MEG experiment analyzed data collected in the years 2009-2011, corresponding to a total sample of 3.6 x 10¹⁴ μ⁺ stopped on target.
 ➤ No excess was found ⇒ MEG established a new upper limit on BR(μ⁺→e⁺γ) < 5.7 x 10⁻¹³ (90% C.L.):
 - 4 times better than previous MEG limit (MEG 2011)
 - 20 times better than pre-MEG limit (MEGA, 2001) Sensitivity was 7.7 x 10⁻¹³ (negative fluctuation observed);
- \triangleright Data acquisition will end on late summer 2013;
- ➢ Data collected in 2012+2013 will double the statistics ⇒ expected final sensitivity 5 x 10⁻¹³.

Detector upgrade proposal approved \Rightarrow see Y. Uchiyama talk !

Backup slides

19 July 2013

Several LFV processes, sensitive to New Physics (NP) through

Indirect vs direct searches < 2013

Adapted from L. Calibbi et al., JHEP **1211** (2012) 040

MEG 2011 = PRL 107 (2011) 181201

mSUGRA, tan $\beta = 10$, $U_{e3} = 0.11$ Red points: mixing based on PMNS Blue points: mixing based on CKM

Models compatible with MEG 2011 result

19 July 2013

Sensitivity of different experiments 2)

 $\mu \rightarrow e\gamma vs \mu \rightarrow eee$

Effective lagrangian

A $\mu \rightarrow e\gamma$ experiment with sensitivity of ~ 10⁻¹⁴ is competitive with a $\mu \rightarrow eee$ experiment with sensitivity ~ 10⁻¹⁶ for k \leq 1; for large k, only $\mu \rightarrow eee$ survives.

Needed all types of experiments

A. de Gouvea & P. Vogel, hep-ph 1303.4097

19 July 2013

Sensitivity of different experiments 1)

Effective lagrangian

$\mu \rightarrow e\gamma$ vs $\mu \rightarrow e$ conversion

A. de Gouvea & P. Vogel, hep-ph 1303.4097

19 July 2013

19 July 2013

Tokyo U.

Waseda U.

KEK

Fabrizio Cei

INFN & U Pisa

INFN & U Roma

INFN & U Genova INFN & U Pavia INFN & U Lecce PSI

8

UCIrvine

JINR Dubna

BINP Novosibirsk

MEG detector components 1)

Superconducting solenoid with gradient field (COBRA)

Sweeps out low P_z positrons. Bending radius independent of θ emission angle.

205 μm polyethylene target,
20.5° slanted angle,
stopping efficiency 82%

16 DCH with staggered anodic wires and cathodic strips in Vernier pattern. Gas mixture He: $C_2H_6 = 50:50$ Positron moment

Positron momentum vector measurement. 19 July 2013 Fabrizio Cei

MEG detector components 2)

Fabrizio Cei

900 1 Liquid Xenon detector 846 UV sensitive PMTs Light yield ≈ 0.8 NaI. Fast timing response (45 ns) $\Delta\Omega/4\pi \approx 0.12$ Photon energy, timing and interaction point measurement.

15 x 2 scintillator bars
with fine mesh PMTs
at both ends.
Positron timing
measurement.

19 July 2013

Overview of calibration system

Trigger and electronics

Live time - online efficiency plane

↓ Trigger FPGA based system designed to reduce the trigger rate by using fast estimates: γ-energy: → 2 x 10³ Hz e⁺γ timing → 100 Hz e⁺γ direction → 10 Hz Signal efficiency > 95% Live Time fraction 99%

Readout

DRS digitizer chip developed at PSI Maximum sampling speed 5 GHz, used in MEG **0.8 and 1.6 GHz**. 12 bit voltage digitization

Live time 0.9 0.9 0.8 0.85 -0.7 0.8 0.75 0.6 0.7 0.5 0.65 2008 0.6 0.4 2009-2010 0.55 2011-2013 0.3 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 2008 → 2009 : direction-match and ficientergy resolution improvement $2010 \rightarrow 2011$: multiple-buffer readout

19 July 2013

Normalization

$$N_{e\gamma} = BR(\mu^+ \to e^+ \gamma) \cdot k$$

where: $\frac{\varepsilon(TRG = 0 | e^+ \gamma)}{\varepsilon(TRG = 22 | track \cap e_m^+ \cap TC)}$ $\times A(\gamma \mid track) \cdot \varepsilon(\gamma) \cdot Psc(22)$ $k \equiv N_{evv} \times$ $f_s \equiv A(DC) \cdot \varepsilon (\text{track}, p_e > 50 \text{MeV} | DC) \cdot \varepsilon (TC | p_e > 50 \text{MeV})|_s$ 10⁷ pre-scaling $f_{\lambda\Lambda} \equiv \dots$ factor 107 140 120 theory 100 resolution 0.2 acceptance 50 10 20 40 30

TRG = 22: Michel events trigger (only DCH track required)
TRG = 0: MEG events trigger
19 July 2013 Fabrizio Cei

33

PDF's

55 MeV π^o peak

19 July 2013

Indirect vs direct searches NOW

Adapted from L. Calibbi et al., JHEP **1211** (2012) 040

mSUGRA, tan $\beta = 10$, $U_{e3} = 0.11$ Red points: mixing based on PMNS Blue points: mixing based on CKM

Models below this line excluded by direct LHC searches

19 July 2013

