


 
 
 
  1.  LEPTON CHARGE NONCONSERVATION AND MIXING OF LEPTONS   
       WITH DIFFERENT FLAVORS 
 
    The lepton charge nonconservation (nonconservation of the lepton numbers 

)  leads to the mixing of the electron, muon and tau neutrinos, which 

manifests itself in the spatial oscillations at the neutrino beam propagation in 
vacuum [1] . At the same time, the lepton-charge non-conserving interaction 
should also weakly mix the ordinary leptons with the same electric charge            
(e

τμ LLLe   ,  ,

–, μ–, τ–, as well as e+, μ+, τ+) and should be, in particular, the cause of the 
nonzero probabilities of the  μ–  decay into the electron and  γ quantum and the  μ+  
decay into the positron and γ quantum, which are forbidden under the lepton 
charge conservation .   
 
   Let us emphasize that, in the framework of the scheme under consideration, the 
total lepton number τμ LLLL e ++=   is conserved.  

 
   It is accepted to take the lepton numbers of the electron and electron neutrino to 
be equal to 0  , 0  , 1 ==+= τμ LLLe , those of the negative muon and muon neut-

rino – to 0  , 1  , 0 =+== τμ LLLe ,  and those of the τ– lepton and  tau neutrino – to 

. For antiparticles, the respective lepton numbers have the 

opposite sign: 

1  , 0  , 0 +=== τμ LLLe

0  , 0  , 1 ==−= τμ LLLe  for the positron and electron antineutrino, 

 for the positive muon and muon antineutrino, and  

  for the τ

0  , 1  , 0 =−== τμ LLLe

1  , 0  , 0 −=== τμ LLLe
+ lepton  and tau antineutrino.  

 
2.  MASS MATRIX AND NEUTRINO STATES WITH THE DEFINITE   
     MASSES    
 
   Taking into account the  CP invariance  ( T  invariance ), the mass matrix for the 
neutrino family should be symmetric and, due to hermiticity, real. It has the 
general structure of the form : 
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   The diagonal elements of this mass matrix have the meaning of the masses of 

electron neutrino ( ), muon neutrino ( ) and tau neutrino     

( ), whereas the nondiagonal elements    

)()(   νν
eee mm ≡ )()(   ν

μ
ν

μμ mm ≡
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( ) characterize the degree of lepton charge 

nonconservation 
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1). In doing so, the states with the definite lepton charge (“flavor”) 
〉〉〉 τμ ννν |  ,|  ,| e  are connected with the stationary states 〉〉〉 321 |  ,|  ,| ννν , being 

related with the definite masses m1, m2, m3, by the following unitary transforma-
tion :   
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    Let us note that, due to T invariance , the unitary matrix is real. This means 

that the inverse matrix coincides with the transposed primary one   

 ˆ U

 )ˆ ( 1−U

( ). Thus, the states with the definite lepton charge represent the 
coherent superpositions of stationary states, and the stationary states represent the 
superpositions of states with the definite lepton charge, having the same 
coefficients:  

eiie UU ˆ  )ˆ ( 1 =−

                             (3) ; ||   , ||    ,  ||
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                                      . | ||| 〉+〉+〉=〉 ττμμ νννν iieeii UUU                               (4)    

 

                                                 
1) Due to the CPT invariance, the mass matrices for neutrinos and antineutrinos should coincide    

( )()( ˆˆ νν mm = ) . 
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   The elements of the unitary matrix in  Eqs. (3)  and (4)  are scalar products of 
the neutrino states with the definite lepton charge and neutrino stationary states: 

Û

 
                           . ||       , ||      , ||  〉=〉=〉= ττμμ iiiiieei UUU νννννν                     (5)    

 
   It is obvious that the neutrino stationary states – as the eigenstates of the mass 
matrix, corresponding to the different masses m1, m2 and m3 – are mutually 
orthogonal:   
 
                                      , 0  ||    ||    || 313221 =〉=〉=〉 νννννν                               (6) 
 
in accordance with the unitarity condition, due to which the following equality 
holds: 
 
                  . 3  2,  ,1,     ,        || =δ=++=〉 ττμμ kiUUUUUU ikkikiekeiki νν              (7)    

 
 
   3.  NEUTRINO OSCILLATIONS   
 
    Just the difference of masses of neutrino stationary states is the cause of neutrino   
oscillations. 
 
    If a neutrino is generated, at a fixed energy E, in the state 〉lν|  with the definite 

lepton charge ( “flavor” )  ( 〉lν|  – electron, muon or tau neutrino ), then, at the 
finite distance L  from the point of generation, it turns into the superposition of the 
form ( see Eqs. (3), (4) )  
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where  pi  is the momentum of the stationary neutrino  〉iν|   with the mass  mi  at 

the energy  E .  Since neutrinos are in fact ultrarelativistic particles, we may write 
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( In relations (8) and (9) , c  is the velocity of light in vacuum and    is the Planck 
constant . ) 
 
   Then the amplitude of transition of the electron neutrino into the muon one at the 
distance L  from the generation point will have the form  
 

           

.    
  2

    exp    
  2

    exp                    

   
  2

    exp          )|  | ( 

]
[

32
3

33

32
2

22

32
1

11

  

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−+

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=〉→〉

μμ

μμ

E
LcmiUU

E
LcmiUU

E
LcmiUUeA

ee

e
c

ELi

Le  νν
      (10) 

 

   
   Taking into account the unitarity condition, which implies the equality: 
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   the probability of transition of the electron neutrino into the muon one at the   
distance L  from the generation point is as follows: 
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   In doing so, the arguments of oscillating terms in Eq. (12) may be presented in  
the form  
 

L
E
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  where the masses are given in  2
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c

 , the energy – in GeV,  and the distance  L – 

in kilometers. The respective periods of spatial oscillations are equal to 
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   Analogously, the probability of transition of the electron neutrino into the tau 
neutrino at the distance L from the point of generation is described by Eq. (12) 
with the replacements 
 

       ,       ,      332211 τμτμτμ →→→ UUUUUU . 

 
   Meantime, the probability of the event that the electron neutrino does not change 
its “flavor” at the distance L from the point of generation amounts to  
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  Here, we have taken into account that, in accordance with the unitarity condition,   
 

1      
2 

2 =⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
∑

i
eiU  . 

 6



 
   Just as one should expect, the unitarity relation   
 

      ei ek i k i k ikU U U U U Uμ μ τ τ+ + = δ  

 
   ensures the equality     
 

 1    )|  | (   )|  | (    )|  | ( =〉→〉+〉→〉+〉→〉 LeLeLee WWW  νν νν νν τμ  . 

 
   According to the relations (11), (12) and (13), the admixtures of muon and tau  
neutrinos, averaged over the spatial oscillations  ( over the energy spectrum at a 
given distance  L  ) , are, respectively, as follows:  
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 and the average intensity of the beam of electron neutrinos, attenuated as a result 
of spatial oscillations, is proportional to :  
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   It can be shown that the absolute minimum of the quantity   )|  | (  νν 〉→〉 eeW  is 

equal to 3
1   in accordance with the number of stationary neutrinos   n = 3 . 

 
   If the neutrino oscillations were conditioned – as it was assumed before – by the 
existence of only two stationary states, then one would need to take, in Eq. (12), 
 

3 3 0eU Uμ= =  . 

 
  Then, in accordance with the unitarity condition, 
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    Introducing the mixing angle θ, one may write  
 

1 2 2 1cos  ,     sin   .e eU U U Uμ μ= = θ = − = θ  

 
    In this case, the probability of transition of the electron neutrino into the muon 
one at the distance L  from the generation point, calculated according to Eq. (12), 
 equals 
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   The expression being analogous in structure is still valid with the presence of  
three stationary neutrinos as well,  if at a given distance L  the condition 
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   since, owing to the unitarity condition for the matrix , Û
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  In doing so, 
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   Formula (19) describes, in particular, the decrease of intensity of the beam of 
reactor antineutrino with energy around several MeV at comparatively small 
distances from the reactor on account of the transition of the electron antineutrino 
into the muon one, which is “sterile” below the threshold of meson production . 
 

4.  NONDIAGONAL ELEMENTS OF THE MASS MATRIX AND THEIR  
     CONNECTION WITH THE  DIFFERENCES OF NEUTRINO MASSES 
 
   By applying relations (3),  the nondiagonal elements of the mass matrix can be 
expressed through the differences of masses of neutrino stationary states and the 

elements of the unitary matrix  U .  Indeed, it is easy to see that    ˆ
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  where mi   is the neutrino mass in the stationary state 〉iν| ,  as before . 
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    Taking into account the unitarity condition   
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    As a result, Eq. (21) gives  
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  Formula (25), determining the matrix element , incorporates the values of 

differences of stationary neutrino masses. Meantime, the experimental data on 
neutrino oscillations contain the information only on the differences of squares of 
masses.  

)(ν
μem

 

   If the moduli of differences of mass squares are very small as compared with the 
square of each of the masses (which seems to be plausible), then the masses of all 
the three stationary neutrinos may be assumed to be approximately equal to each 
other: 
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   In this situation, the moduli of all the differences of masses are very small as 

compared with the common neutrino mass : )(νm
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  Within this approximation, the differences of stationary neutrino masses are 
determined according to the formulas 2) :  
 

 
2) The experimental data on oscillations [1]  testify to the fact that  
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   This means that the difference of masses of the first and second stationary neutrinos is very 
small as сompared with their distinction from the mass of the third stationary neutrino, which is 
itself also relatively small .  
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  Taking into account relations (28), we may rewrite Eq. (25)  in the form  
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   5.  STATES OF CHARGED LEPTONS WITH THE DEFINITE MASSES    
 
    Taking into account the lepton-charge non-conserving interaction, the mass 
matrix for the family of leptons, including the electron, the negative muon and the 
τ–  lepton, has the form being analogous to the mass matrix for the neutrino family : 
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    The diagonal elements of the mass matrix M̂  are equal to the masses of electron 
( , eee MM ≡ 0  , 0  , 1 ==+= τμ LLLe ) , negative muon ( , μμμ MM ≡ 0 , eL =  

)  and  τ 1 ,  0L Lμ τ=+ = –  lepton  ( τττ MM ≡ ,  1  , 0  , 0 +=== τμ LLLe ) ,  whereas 

the nondiagonal elements, being responsible for the lepton charge nonconservation, 
are negligibly small as compared with the electron mass  Me  and, all the more, as 
compared with all the differences of masses ( ), ( ), ( )e eM M M M M Mμ τ τ μ− − − . Just 

the same mass matrix corresponds to the family of antileptons, incorporating the 
positron ( 0  , 0  , 1 ==−= τμ LLLe ), the positive muon ( ) 

and the  τ

 0 ,   1 ,  0eL L Lμ τ= = − =
+ lepton  ( 1  , 0  , 0 −=== τμ LLLe ) .  

 

   Due to  T  invariance, the Hermitian matrix M̂  should be symmetric and, hence, 
real: 
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   Within the perturbation theory first-order approximation, the stationary states of 
leptons represent the superpositions of states with different lepton charges: 
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   The stationary states, denoted by prime, are related with different masses. In 
doing so, these masses practically coincide with the masses of leptons: 
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and the coefficients of mixing of states with different lepton charges are expressed 
through the ratios of nondiagonal elements of the mass matrix to the differences of 
masses of respective leptons. Indeed, neglecting the second-order terms over the 
lepton-charge non-conserving interaction, we find:  
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    Let us note that, taking into account the small values of mixing coefficients, 
relations (34)  follow also from the expressions being analogous to Eqs. (21) and 
(22)  for neutrinos. 
 
    In Eqs. (32), the symbols   e〉μ|   and   e〉 | τ   denote the  “muonic” ( Lμ = 1 )  and  

“tau-leptonic” ( Lτ = 1 )  states included into the stationary superposition with the 
electron mass   Me  ,  the symbols   and  μ〉e| μτ 〉 |   denote the  “electronic” ( Le = 1) 

and  “tau-leptonic” ( Lτ = 1 )  states included into the stationary superposition with 
the muon mass   Mμ  ,  and the symbols    and  τ〉e| τμ 〉 |   denote the  “electronic”       

( Le = 1 )  and  “muonic” ( Lμ = 1 )  states included into the stationary superposition 
with the τ-lepton mass  Mτ  .  

 

  6.  COEFFICIENT  OF  MIXING  OF  THE  STATES  WITH  THE  LEPTON          
       CHARGES  Le = 1  AND  Lμ = 1  AND  PROBABILITY  OF THE  DECAY 
       μ– →  e–  +  γ     
 
   Let us estimate the probability of the radiative decay   μ– →  e–  +  γ , being  
forbidden under the lepton charge conservation, assuming that this decay occurs on 
account of  “admixture” of the state  with the electronic lepton number  Le = 1  

to the state of negative muon . Then the probability of decay  μ
μ〉e|

– →   e–  +  γ   per 
unit time will be as follows:  
 

                          ,                       (35) )   | (||    )    ( 2 γεγμ μμ +→〉=+→ −−− eeWeW e

 
where    is the mixing coefficient included in the second formula in Eqs. (32) . μεe

  Meantime, the differential probability of decay of the “heavy electron” with mass 
Mμ  into the ordinary electron with momentum   
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 (   is the unit vector along the momentum )   and  the  γ  quantum with energy   n 
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2

2
22

c
M

MM
E e

μ

μ
γ

−
=                                              (37) 

 
per unit time can be calculated according to the standard formula of quantum 
electrodynamics [5]: 
 

                               np Ωϕψ
π

ω
=γ+→〉 +−

μ dK
c

eeeWd  |  |   
2

 )   | ( 2
0

2

α χ  ,                (38) 

 

  where   
137

12

=
c

e    is the fine structure constant, γω
E

=   is the frequency of  γ 

quantum, 2 
1  

cM
E

K
μ

γ−=  ,  χ   is the vector of polarization of  γ quantum,   pψ    is 

the Dirac bispinor describing the ordinary electron with mass  Me   and momentum 

p,  α  is the four-row Dirac matrix  (   [5]  ) ,  ϕ0  is the Dirac 

bispinor corresponding to the resting “heavy electron” with mass  Mμ  .  Passing to 
the two-row Pauli matrices , we may write  

⎟
⎠
⎞

⎜
⎝
⎛

   σ 
σ

=α
0 ˆ

  ˆ    0  ˆ

σ̂
 

                        ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ +

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

+
σ=

0
     ,

2
   )(

        
0

0

2
1

2

2
0

0 v
E

cME

cME
u

u

e

ee

ee

ϕψ pp  ,                   (39)   

 
 where  u0    and  v0   are the two-row spinors, normalized by unity, and   
 

                       2
22

22
14222  

2
 ) |(| c

M
MM

EcMcMcE e
ee

μ

μ
γμ

+
=−=+= p  .              (40) 

 
    In doing so, we have  
 

                         
1

2 2

0 0 02
ˆ ˆ ) (  )        

2
e e

ee e

E M ccu v
EE M c

+ +⎛ ⎞ ⎛ +
ψ φ =⎜ ⎟ ⎜+⎝ ⎠ ⎝

p
p(χ σ σ

χ α
⎞
⎟
⎠

 .                  (41) 
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   Taking into account that the final electron is ultrarelativistic  (
2
 2cM

EE e
μ

γ ≈≈  ,   

2
1   ≈K ), we obtain the following expression – after averaging the differential 

probability of emission over the polarizations of the “heavy electron” and summing 
over the polarizations of the γ quantum and final ordinary electron : 
 

        

2

22

1 1ˆ ˆ ˆ ˆ ( |    )        ( ) (  ) (  ) ( )   
4 2 2

 1                         .
8

ed W e e tr d
c

M ce d
c

−
μ

μ

⎡ ⎤ω
〉 → +γ = Ω =⎢ ⎥

π ⎢ ⎥⎣ ⎦

= Ω
π

∑ n

n

n n
χ

σχ σ σ σχ
 (42) 

 
   The total probability of radiative decay of the “heavy electron” per unit time 
amounts to  
 

                                           
 

  
 2

  )   | ( 
22 cM

c
eeeW μ−

μ =γ+→〉  .                                    (43) 

 

    Taking into account the numerical values  ( 
137

1    MeV,6.105 
2

2 ==
c

ecMμ   )  , 

the probability of radiative decay of the electronic state with mass   Mμ  ( per 1 sec) 
equals 
 

                  121
27

126

sec  10583.0
13710054.1 2

106.1106.105)   | ( −
−

−
−

μ ⋅=
⋅⋅⋅

⋅⋅⋅
=γ+→〉 eeW  .           (44)   

 
   According to relations (35) and (38), 
 

                   2 2 22 2

(    )    (    ) 

                                     .
2 2 

e

e

W e W e

M M c Me
M M c M c

− − + +

μ μ μ

μ μ

μ → +γ = μ → +γ =

⎛ ⎞
= ≈⎜ ⎟⎜ ⎟−⎝ ⎠

2
e e c          (45)       

 
     As follows from the experimental data [6], 
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                        )    (  102.1    )   ( 11
μννμγμ ++→⋅<+→ −−−−−

eeWeW  ,              (46)          

 

where  )    (  μννμ ++→ −−
eeW  is the probability of decay of the negative muon 

into the electron, electron antineutrino and muon neutrino per unit time, coinci-
ding practically with the inverse lifetime of the muon: 
 

6 11(   )    0.455  10  seceW e− −
μ

μ

μ → +ν +ν = = ⋅
τ

−

1−

. 

  Thus, in accordance with the experimental restriction (46), we obtain  

 

                                        .                             (47) 5(   )    0.546  10  secW e− − −μ → +γ < ⋅

 
  Taking into account Eqs. (35), (43) and (45), this means that    
 

                        

2
2 26 2 10

4

5
2

eV| |    0.936  10 ,    | |    1.032  10   ,  

eV                                | |    1.016  10     . 

e e

e

M
c

M
c

− −
μ μ

−
μ

ε < ⋅ < ⋅

< ⋅
              (48)     

   

  7.  HYPOTHESIS ON THE EQUALITY OF NONDIAGONAL ELEMENTS OF    
       THE MASS MATRICES FOR NEUTRINOS AND CHARGED LEPTONS   
       AND THE ESTIMATE OF THE LOWER BOUND OF NEUTRINO MASS 
 
   Let us suppose that the mixing of ordinary leptons  (e , μ,  τ)  and the mixing of 
neutrinos ( τμ ννν   ,  ,e ) are conditioned by the same lepton-charge non-conserving 

interaction. Under this natural assumption, the nondiagonal elements of the three-
row mass matrix for the lepton family should coincide with those of the three-row 
mass matrix for neutrinos:  
 

                                  ( ) ( ) ( ),     ,    e e e eM m M m M mν ν
μ μ τ τ μτ μ= = ν

τ= .                                (49)          
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    Thus, we will assume that the matrix element , included into formula (45). 

may be replaced by the matrix element  corresponding to the neutrino family. 

Then, taking into account Eq. (29) and inequalities  (48),  we obtain the following 

inequality for the neutrino mass  :  

μeM
)(ν

μem

)(νm
 

   

( )

2 2
12 23 13 12 23 13 2 1( )

2 2 5
13 23 3 2 2

| |    | |  

1         | ( sin 2 cos cos cos sin sin 2  ) ( )  
4

eV           sin 2 sin  ( )  |    1.016  10     .

e eM m

m m
m

m m
c

ν
μ μ

ν

−

= =

= θ θ θ + θ θ θ −

+ θ θ − < ⋅

2 +  (50)             

 
  According to the experimental data on neutrino oscillations  [6] , 
 

19.02sin      , 92.02sin    ,  86.02sin 13
2

23
208.0

04.012
2 <θ>θ=θ

+

−
; 

 
2 2

2 2 5 2 2 3
2 1 3 24 4

eV eV| |  (8.0  0.3)  10     ,       | |  (1.9 3)  10   m m m m
c c

− −− = ± ⋅ − = ÷ ⋅  . 

 
  Assuming, respectively, that  
 

2 2
12 12 23 23 13 sin 2 0.86    ( 34 )  ,    sin 2 0.92    ( 36.8 ) ,   0  ,θ = θ = ° θ = θ = ° θ = °  

                    
2

2 2 5
2 1 4

eV| |  8  10   m m
c

−− = ⋅  , 

 
  we find  
 

                                     ( )
2

0.927 0.88 eV     1.46  
41.016

m
c

ν ⋅ ⋅
> =

⋅
 .                                    (51) 

 
   This value for the lower bound of neutrino mass is in accordance with the upper 
limit of antineutrino mass determined in the works by Lobashev et al. [7] 

( 2
)( eV  3.2

c
m <ν  )  and Kraus et al. [8]  ( 2

)( eV  5.2
c

m <ν  )  within the study of  

 electron spectrum in the tritium β-decay ( see also  [6] ) . 
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    8.  CONCLUDING REMARKS   
  

   Let us emphasize that our estimate for the lower bound of neutrino mass  is 
based on the experimental data on neutrino oscillations, on the experimental 
restriction for the probability of decay   μ

)(νm

– →  e–  +  γ   per unit time and on the 

assumption that the nondiagonal element of the neutrino mass matrix , 

characterizing the mixing of muon and electron neutrino on account of the lepton 
charge nonconservation, coincides with the nondiagonal element of the mass 
matrix for ordinary leptons , characterizing the mixing of negative muon and 

electron – which seems natural from our point of view . 

)(ν
μem

μeM

 

  Meantime, if     , then the value for the lower bound of neutrino 

mass will change as compared with the magnitude obtained above . In this case, 

||    || )(ν
μμ ee mM ≠

 

2
)( eV  |  |  1.46  

c
m η>ν  , 

where  )(    ν
μ

μ=η
e

e

m
M

   is the ratio of nondiagonal elements of the mass matrices for 

leptons and neutrinos  . 
 
   If, in further experiments, the probability of decay   μ– →  e–  +  γ  per 1 sec will 
be determined or the upper limit of this probability will be reduced, this will testify 
to the fact that the parameter | η | < 1  – since, otherwise, we would get a 
contradiction with the experimental data on the upper bound of neutrino mass  . 
 
    Under the choice of another set of parameters (taking into account the latest data 
on the nonzero neutrino mixing angle θ13): 
 

 , )92.02(sin    36.8     

  , )095.02sin (    9        , eV  103 ||  

, )86.02sin (    34        , eV  108 ||   

23
2

23

13
2

134

2
32

2
2
3

12
2

124

2
52

1
2
2

=θ°=θ

=θ°=θ⋅=−

=θ°=θ⋅=−

−

−

c
mm

c
mm
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we would obtain the estimate 
 

2
)( eV  |  |  15.1) (12.1  

c
m η÷>ν   , 

 
which may be in accordance with the presently known upper limits for the 
probability of decay   μ– →  e–  +  γ  per 1 sec and neutrino mass only at the ratios 

of moduli of matrix elements   1
( )   |   |  ~  10e

e

M
m

μ −
ν
μ

= η < . 
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