Searches for vector-like quarks with the ATLAS detector

Antonella Succurro

on behalf of
the ATLAS collaboration

EPS 2013, Stockholm, July 18th-24th
Outline

Introduction

General Strategy

$T\bar{T} \rightarrow Ht + X$

Same-sign dileptons

$B\bar{B}(T\bar{T}) \rightarrow Zb(t) + X$

$T\bar{T} \rightarrow Wb + X$

Conclusions
Standard Model as an effective theory

The Standard Model does not provide answers to the following questions

- Where does the baryon asymmetry come from?
- What is Dark Matter?
- How to solve the hierarchy problem?

Supersymmetry is not the only possible solution... Extra-dimensions [1], composite Higgs [2] models with new heavy quarks predicted [3]

- Not chiral\(^{(a)}\): chiral 4th generation would change the Higgs SM cross section and B.R.
- Vector-like: left and right components transform the same under \(SU(2) \times U(1)\)
- Weak-isospin singlets, doublets or triplets

\[\text{not naturally solve the hierarchy problem, like a stop squark in SUSY}\]

\(^{(a)}\) still, some models allow for a chiral fourth generation, see e.g. [4]
Heavy quark production

from [5]

Pair-production via strong interaction
Heavy quark production

Pair-production via strong interaction

EW single production could dominate at high mass
Outline

Introduction

General Strategy

$T\bar{T} \rightarrow Ht + X$

Same-sign dileptons

$B\bar{B}(T\bar{T}) \rightarrow Zb(t) + X$

$T\bar{T} \rightarrow Wb + X$

Conclusions
Heavy quark decay modes

B.R.s are very model dependent

- most analyses optimized for specific decay channels

![Graphs showing branching ratios for T and B quarks](image)
Heavy quark decay modes

B.R.s are very model dependent

- most analyses optimized for specific decay channels
Heavy quark decay modes

B.R.s are very model dependent

- most analyses optimized for specific decay channels

T

- SU(2) Singlet
- (T,B) or (X,T) Doublet

B

- SU(2) Singlet
- (B,Y) Doublet
- (T,B) Doublet

A Succurro, IFAE Barcelona

EPS 2013, Stockholm, July 18th-24th

6/23
Heavy quark decay modes

B.R.s are very model dependent

- most analyses optimized for specific decay channels
Heavy quark decay modes

B.R.s are very model dependent

- most analyses optimized for specific decay channels
Model Independent Strategy \ldots since Oct 2012 [8]!

- Build a 2-dim plane to scan model mixing

\[
\begin{align*}
\text{BR}(T \rightarrow Wb) \\
\text{BR}(B \rightarrow Wt)
\end{align*}
\]
Model Independent Strategy ... since Oct 2012 [8]!

- Build a 2-dim plane to scan model mixing

\[BR(T \rightarrow Wb) \]
\[BR(B \rightarrow Wt) \]

\[BR(B \rightarrow Hb) \]
\[BR(T \rightarrow Ht) \]

Forbidden

\[\text{Sum of BRs is 1} \]

\[(a) \]
\[(a) \]

\[BR(T/B \rightarrow Zt/b) = 1 - BR(T/B \rightarrow Ht/b) - BR(T/B \rightarrow Wb/t) \]

Different analyses are sensitive to different areas

\[Ht(b) \]
\[Zt(b) \]
\[Wb(t) \]

Set exclusion using CLs technique [6, 7]

Using 14.3 fb\(^{-1}\) of 2012 data

Updating 7 TeV results
Model Independent Strategy ... since Oct 2012 [8]!

- Build a 2-dim plane to scan model mixing
- Sum of BRs is \(1^{(a)}\)

\[
\begin{align*}
\text{BR}(T \rightarrow Wb) & \quad \text{BR}(B \rightarrow Wb) \\
\text{BR}(T \rightarrow Ht) & \quad \text{BR}(B \rightarrow Hb)
\end{align*}
\]

\[(a) \text{BR}(T/B \rightarrow Zt/b) = 1 - \text{BR}(T/B \rightarrow Ht/b) - \text{BR}(T/B \rightarrow Wb/t)\]
Model Independent Strategy … since Oct 2012 [8]!

- Build a 2-dim plane to scan model mixing
- Sum of BRs is \(1^{(a)}\)
- Different analyses are sensitive to different areas

\[(a) \text{BR}(T/B \to Zt/b) = 1 - \text{BR}(T/B \to Ht/b) \]
\[- \text{BR}(T/B \to Wb/t) \]
Model Independent Strategy … since Oct 2012 [8]!

- Build a 2-dim plane to scan model mixing
- Sum of BRs is $1^{(a)}$
- Different analyses are sensitive to different areas

\[(a) \text{BR}(T/B \rightarrow Zt/b) = 1 - \text{BR}(T/B \rightarrow Ht/b) - \text{BR}(T/B \rightarrow Wb/t)\]
Model Independent Strategy ... since Oct 2012 [8]!

- Build a 2-dim plane to scan model mixing
- Sum of BRs is $1^{(a)}$
- Different analyses are sensitive to different areas

$$\begin{align*}
\text{BR}(B \rightarrow Wb) &< \text{BR}(T \rightarrow Ht) \\
\text{BR}(B \rightarrow Wt) &< \text{BR}(T \rightarrow Ht) \\
\text{BR}(T \rightarrow Zt) &< \text{BR}(B \rightarrow Wt) \\
\text{BR}(T \rightarrow Wb) &< \text{BR}(B \rightarrow Wt) \\
\end{align*}$$

$$(a) \text{BR}(T/B \rightarrow Zt/b) = 1 - \text{BR}(T/B \rightarrow Ht/b) - \text{BR}(T/B \rightarrow Wb/t)$$
Model Independent Strategy … since Oct 2012 [8]!

- Build a 2-dim plane to scan model mixing
- Sum of BRs is 1\(^{(a)}\)
- Different analyses are sensitive to different areas
- Set exclusion using \(CL_s\) technique [6, 7]
- Using 14.3 fb\(^{-1}\) of 2012 data

\[
\text{BR}(T \rightarrow Wb) + \text{BR}(B \rightarrow Wt) = 1 - \text{BR}(T \rightarrow Ht) - \text{BR}(T \rightarrow Zt) = \text{BR}(T \rightarrow Zt) + \text{BR}(B \rightarrow Ht) \]

\(^{(a)}\)
Model Independent Strategy ... since Oct 2012 [8]!

- Build a 2-dim plane to scan model mixing
- Sum of BRs is 1\(^{(a)}\)
- Different analyses are sensitive to different areas
- Set exclusion using \(CL_s\) technique [6, 7]

\[^{(a)}\]BR(T/B \rightarrow Zt/b) = 1 - BR(T/B \rightarrow Ht/b) - BR(T/B \rightarrow Wb/t)

Using 14.3 fb\(^{-1}\) of 2012 data

Updating 7 TeV results
Outline

Introduction

General Strategy

$T \bar{T} \rightarrow Ht + X$

Same-sign dileptons

$B \bar{B}(T \bar{T}) \rightarrow Zb(t) + X$

$T \bar{T} \rightarrow Wb + X$

Conclusions
\(\bar{T}T \rightarrow Ht + X \)

Channel with high jet and \(b \)-tagged jet multiplicity \((H \rightarrow bb, t \rightarrow Wb)\)

Three channels:
\[
= 2, \ = 3, \geq 4 \text{ } b\text{-tagged jets}
\]

Discriminant variable:
\[
H_T = \sum_j p_T(j) + p_T(l) + E_{\text{miss}}^T
\]

- At least 6 jets with \(p_T > 25 \text{ GeV} \)
- Exactly one well reconstructed, isolated lepton (\(e \) or \(\mu \))
- \(E_T^{\text{miss}} > 20 \text{ GeV} \)
- \(E_T^{\text{miss}} + \)\(m_T(W) > 60 \text{ GeV} \)

\(\int L dt = 14.3 \text{ fb}^{-1} \)
$T \bar{T} \rightarrow H_t + X$

T exclusion plane [10] I

$\text{BR}(T \rightarrow H_t)$

$m_T = 350 \text{ GeV}$
$m_T = 400 \text{ GeV}$
$m_T = 450 \text{ GeV}$
$m_T = 500 \text{ GeV}$
$m_T = 550 \text{ GeV}$
$m_T = 600 \text{ GeV}$
$m_T = 650 \text{ GeV}$
$m_T = 700 \text{ GeV}$
$m_T = 750 \text{ GeV}$
$m_T = 800 \text{ GeV}$
$m_T = 850 \text{ GeV}$

$\sqrt{s} = 8 \text{ TeV}, \quad \int L \, dt = 14.3 \text{ fb}^{-1}$

[95% CL exp. exc.]

[95% CL obs. exc.]

[ATLAS:CONF-2013-018]

[\star SU(2) (T,B) doub.]

[\bullet SU(2) singlet]
Outline

Introduction

General Strategy

$T\bar{T} \rightarrow Ht + X$

Same-sign dileptons

$B\bar{B}(T\bar{T}) \rightarrow Zb(t) + X$

$T\bar{T} \rightarrow Wb + X$

Conclusions
Same-sign dileptons

Channel with very small contamination from SM backgrounds: sensitive to many possible new physics signals like vector-like B and T, $\tilde{t}\tilde{t}$, \tilde{g}

- Exactly 2 leptons (e or μ) with same electric charge
- ≥ 2 jets with $p_T > 25$ GeV
- $E_T^{\text{miss}} > 40$ GeV
- $H_T^{(1)} > 650$ GeV
- Z veto in ee and $\mu\mu$ channels
- ≥ 1 b-tagged jet
- ≥ 2 jets with $p_T > 25$ GeV
- $E_T^{\text{miss}} > 40$ GeV
- $H_T^{(1)} > 650$ GeV

<table>
<thead>
<tr>
<th>Backgrounds</th>
<th>ee</th>
<th>$e\mu$</th>
<th>$\mu\mu$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Charge misidentification</td>
<td>0.6 ± 0.1 ± 0.2</td>
<td>0.9 ± 0.1 ± 0.3</td>
<td>—</td>
</tr>
<tr>
<td>Fakes</td>
<td>0.8 ± 0.4 ± 0.3</td>
<td>0.2 ± 0.4 ± 0.1</td>
<td>< 1.1</td>
</tr>
<tr>
<td>Diboson</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WZ/ZZ+jets</td>
<td>0.3 ± 0.2 ± 0.1</td>
<td>0.3 ± 0.1$^{+0.4}_{-0.2}$</td>
<td>0.4 ± 0.2 ± 0.1</td>
</tr>
<tr>
<td>$W^\pm W^\pm$+2 jets</td>
<td>0.17 ± 0.09 ± 0.05</td>
<td>0.3 ± 0.2 ± 0.1</td>
<td>0.2 ± 0.1 ± 0.1</td>
</tr>
<tr>
<td>$tt + W/Z$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$t\bar{t}W$(+jet(s))</td>
<td>0.6 ± 0.2 ± 0.3</td>
<td>1.9 ± 0.2 ± 0.6</td>
<td>1.3 ± 0.2 ± 0.4</td>
</tr>
<tr>
<td>$t\bar{t}Z$(+jet(s))</td>
<td>0.18 ± 0.03 ± 0.06</td>
<td>0.66 ± 0.05 ± 0.22</td>
<td>0.31 ± 0.04 ± 0.10</td>
</tr>
<tr>
<td>$t\bar{t}W^+W^-$</td>
<td>0.024 ± 0.003$^{+0.010}_{-0.007}$</td>
<td>0.072 ± 0.005$^{+0.028}_{-0.020}$</td>
<td>0.055 ± 0.004$^{+0.022}_{-0.016}$</td>
</tr>
<tr>
<td>Total expected background</td>
<td>2.7 ± 0.5 ± 0.4</td>
<td>4.4 ± 0.5$^{+0.9}_{-0.7}$</td>
<td>2.3 ± 1.2 ± 0.5</td>
</tr>
<tr>
<td>Observed</td>
<td>3</td>
<td>10</td>
<td>2</td>
</tr>
</tbody>
</table>

$$H_T = \sum_j p_T(j) + p_T(l_1) + p_T(l_2)$$
Same-sign dileptons

\section*{Same-sign dileptons}

T exclusion plane [10] II

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{figures.png}
\caption{Exclusion plots for T production with different masses (m_T) in the BR($T \rightarrow Ht$) vs. BR($T \rightarrow Wb$) plane. The plots show the allowed and excluded regions for the process, with different colors indicating the significance of the exclusion.}
\end{figure}
Same-sign dileptons

\textbf{B exclusion plane [10] I}

\begin{itemize}
\item $m_B = 350$ GeV
\item $m_B = 400$ GeV
\item $m_B = 450$ GeV
\item $m_B = 500$ GeV
\item $m_B = 550$ GeV
\item $m_B = 600$ GeV
\item $m_B = 650$ GeV
\item $m_B = 700$ GeV
\item $m_B = 750$ GeV
\item $m_B = 800$ GeV
\item $m_B = 850$ GeV
\end{itemize}

\textit{ATLAS Preliminary}

\textit{Status: Lepton-Photon 2013}

\(\sqrt{s} = 8 \text{ TeV}, \quad \int L dt = 14.3 \text{ fb}^{-1} \)

- 95\% CL exp. excl.
- 95\% CL obs. excl.

- Same-Sign [ATLAS-CONF-2013-051]

\(<\star>\text{SU(2) (B,Y) doub.}\quad <\bullet>\text{SU(2) singlet}\)
Outline

Introduction

General Strategy

$T\bar{T} \rightarrow Ht + X$

Same-sign dileptons

$B\bar{B}(T\bar{T}) \rightarrow Zb(t) + X$

$T\bar{T} \rightarrow Wb + X$

Conclusions
Exploit ability to reconstruct Z bosons from OS dileptons (e and μ)

- Exactly two same flavor, opposite charge leptons
- Dilepton mass in a 15 GeV mass window around $m(Z)$
- At least two b-tagged jets

$m(Zb)$ is the final test variable: invariant mass of the Z candidate paired with the highest p_T b-tagged jet.
$B\bar{B}(t\bar{t}) \rightarrow Zb(t) + X$

T exclusion plane [10] III

ATLAS Preliminary
Status: Lepton-Photon 2013

$\sqrt{s} = 8$ TeV, \(L \) dt = 14.3 fb$^{-1}$

- 95\% CL exp. exc.
- 95\% CL obs. exc.

- Ht+X [ATLAS-CONF-2013-019]
- Same-Sign [ATLAS-CONF-2013-051]
- Zb(t)+X [ATLAS-CONF-2013-056]

- SU(2) (T,B) doub.
- SU(2) singlet
$B \bar{B}(T \bar{T}) \rightarrow Zb(t) + X$

B exclusion plane [10] II

\[m_B = 350 \text{ GeV} \]

\[m_B = 400 \text{ GeV} \]

\[m_B = 450 \text{ GeV} \]

\[m_B = 500 \text{ GeV} \]

\[m_B = 550 \text{ GeV} \]

\[m_B = 600 \text{ GeV} \]

\[m_B = 650 \text{ GeV} \]

\[m_B = 700 \text{ GeV} \]

\[m_B = 750 \text{ GeV} \]

\[m_B = 800 \text{ GeV} \]

\[m_B = 850 \text{ GeV} \]

BR(B → Hb)

ATLAS Preliminary

Status: Lepton-Photon 2013

$\sqrt{s} = 8 \text{ TeV}, \quad \int dt = 14.3 \text{ fb}^{-1}$

- 95% CL exp. excl.
- 95% CL obs. excl.

- Same-Sign [ATLAS:CONF-2013-051]
- Zb/t+X [ATLAS:CONF-2013-056]

- SU(2) (B,Y) doub.
- SU(2) singlet
Outline

Introduction

General Strategy

$T\bar{T} \rightarrow Ht + X$

Same-sign dileptons

$B\bar{B}(T\bar{T}) \rightarrow Zb(t) + X$

$T\bar{T} \rightarrow Wb + X$

Conclusions
$T\bar{T} \rightarrow Wb + X$

Exploit T’s boosted kinematics to reconstruct W bosons

- $W_{\text{type I had}}$: single merged jet
 $(p_T > 250$ GeV,
 $m_j \in [60, 110]$ GeV)

- $W_{\text{type II had}}$: two close-by jets
 $(\Delta R(j,j) < 0.8, p_T > 150$ GeV,
 $m_{jj} \in [60, 110]$ GeV)

\[\Delta R(l, \nu) < 1.2 \]
\[\min(\Delta R(l, b_{1,2})) > 1.4 \]
\[\min(\Delta R(W_{\text{had}}, b_{1,2})) > 1.4 \]

The reconstructed W boson is matched to the b-tagged jets that gives the lowest mass difference between the leptonical and hadronical leg.
$T \bar{T} \to W_b + X$

T exclusion plane [10] IV

![Graphs showing exclusion limits for m_T ranging from 350 to 850 GeV, with BR($T \to H_t$) on the y-axis and BR($T \to W_b$) on the x-axis. Each graph represents a different mass value with shaded regions indicating forbidden parameter space.](image_url)
Outline

Introduction

General Strategy

$T\bar{T} \rightarrow Ht + X$

Same-sign dileptons

$B\bar{B}(T\bar{T}) \rightarrow Zb(t) + X$

$T\bar{T} \rightarrow Wb + X$

Conclusions
Using 14 fb^{-1} of \sqrt{s} = 8 TeV 2012 LHC data, ATLAS performed four preliminary model independent and complementary searches for heavy quarks.

- Updating \sqrt{s} = 7 TeV analyses

Considering a few benchmark points, at 95% CL we exclude:

- Singlet T with mass up to 670 GeV [9, 15]
- Singlet B with mass up to 645 GeV [13]
- Doublet T with mass up to 790 GeV [9]
- Doublet B with mass up to 725 GeV [13]
References I

TASI lectures on extra dimensions and branes.

Little Higgs models and their phenomenology.

Identifying top partners at LHC.

Status of the Fourth Generation: A Brief Summary of B3SM-III Workshop in Four Parts.
References II

Search for heavy top-like quarks decaying to a higgs boson and a top quark in the lepton plus jets final state in pp collisions at $\sqrt{s} = 8$ tev with the atlas detector.

Search for anomalous production of events with same-sign dileptons and b jets in 14.3 fb^{-1} of pp collisions at $\sqrt{s} = 8$ tev with the atlas detector.

Search for exotic same-sign dilepton signatures (b' quark, $T_{5/3}$ and four top quarks production) in 4.7/fb of pp collisions at $\sqrt{s} = 7$ TeV with the ATLAS detector.
References IV

Search for pair production of new heavy quarks that decay to a Z boson and a third generation quark in pp collisions at $\sqrt{s} = 8$ TeV with the ATLAS detector.

Search for pair production of a new quark that decays to a Z boson and a bottom quark with the ATLAS detector.

Search for pair production of heavy top-like quarks decaying to a high-pT W boson and a b quark in the lepton plus jets final state in pp collisions at $\sqrt{s} = 8$ TeV with the ATLAS detector.
Event pre-selection

ATLAS working groups defined standard object definitions analyses use in general these definitions, as well as common selections

Object definitions

- **Jets**: Topological clusters reconstructed with the AntikT4 algorithm ($p_T > 25$ GeV, $|\eta| < 2.5$, JVF $> 0.5^{(a)}$)
- **Electrons**: Well isolated calo object matched to track ($E_T > 25$ GeV, $|\eta|$ in $[0,2.47]$ removing $[1.37,1.52]$, $z_0 < 2$ mm(b))
- **Muons**: Segment in the tracker and muon detector, isolated track ($p_T > 25$ GeV, $|\eta| < 2.5$, $z_0 < 2$ mm(b))

If jets within $\Delta R < 0.2$ of an electron, the closest jet is discarded; Leptons within $\Delta R < 0.4$ of a jet are removed

Event pre-selection

- ≥ 5 tracks from the Primary Vertex (Cosmics and Pileup rejection)
- If more vertices, choose the one with largest sum of p_T^2
- Single lepton triggers: isolated electron with $p_T > 24$ GeV OR electron with $p_T > 60$ GeV OR isolated muon with $p_T > 24$ GeV OR muon with $p_T > 36$ GeV

If the analysis requires one or more leptons, at least one of them must match the single lepton trigger

(a) the jet vertex fraction is defined as the fraction of summed $p_T (> 0.5$ GeV) of tracks associated to the jet that come from the primary vertex

(b) z_0 is the longitudinal impact parameter of the track wrt the primary vertex
$T\bar{T} \rightarrow Ht + X$ [9]

Three channels:

$= 2$, $= 3$, ≥ 4 b-tagged jets
$T\bar{T} \rightarrow Ht + X$ [9]

ATLAS Preliminary

$\sqrt{s} = 8$ TeV, $\int L \, dt = 14.3$ fb$^{-1}$

- 95% CL expected exclusion
- 95% CL observed exclusion

SU(2) doublet \hspace{1cm} SU(2) singlet

$\text{BR}(t' \rightarrow Wb)$
Same-sign dileptons [11]
Same-sign dileptons [11]

\[\int L \, dt = 14.3 \text{ fb}^{-1}, \sqrt{s} = 8 \text{ TeV} \]
Same-sign dileptons [11]

ATLAS Preliminary

\(\sqrt{s} = 8 \text{ TeV}, \int L \, dt = 14.3 \text{ fb}^{-1} \)

- **95\% CL expected exclusion**
- **95\% CL observed exclusion**

- \(m_B = 350 \text{ GeV} \)
- \(m_B = 400 \text{ GeV} \)
- \(m_B = 450 \text{ GeV} \)
- \(m_B = 500 \text{ GeV} \)
- \(m_B = 550 \text{ GeV} \)
- \(m_B = 600 \text{ GeV} \)
- \(m_B = 650 \text{ GeV} \)
- \(m_B = 700 \text{ GeV} \)
- \(m_B = 750 \text{ GeV} \)
- \(m_B = 800 \text{ GeV} \)
- \(m_B = 850 \text{ GeV} \)

- SU(2) doublet
- SU(2) singlet

\(\text{BR}(B \rightarrow Hb) \)

\(\text{BR}(B \rightarrow Wt) \)
Same-sign dileptons [11]

 ATLAS Preliminary
\(s = 8 \text{ TeV}, \int L \, dt = 14.3 \text{ fb}^{-1} \)

- 95% CL expected exclusion
- 95% CL observed exclusion

SU(2) doublet \quad SU(2) singlet
$B\bar{B}(T\bar{T}) \rightarrow Zb(t) + X$ [13]
$B\bar{B}(T\bar{T}) \rightarrow Zb(t) + X$ [13]

\[\text{BR}(B \rightarrow Hb) = \text{BR}(B \rightarrow Wt) \]

ATLAS Preliminary

\(\sqrt{s} = 8 \text{ TeV, } \int L \, dt = 14.3 \text{ fb}^{-1} \)

- 95% CL expected exclusion
- 95% CL observed exclusion

- SU(2) (B,Y) doub.
- SU(2) singlet

A Succurro, IFAE Barcelona

EPS 2013, Stockholm, July 18th-24th
$B\bar{B}(T\bar{T}) \rightarrow Zb(t) + X$ [13]
$B\bar{B}(T\bar{T}) \rightarrow Zb(t) + X$ [13]
\(T\bar{T} \rightarrow Wb + X [15] \)

- one lepton (e or \(\mu \)), \(E_{T}^{\text{miss}} > 20 \text{ GeV}, \)
 \(E_{T}^{\text{miss}} + m_{T}(W) > 60 \text{ GeV} \)
- \(\geq 3 \) jets and one \(W^{\text{typeI}}_{\text{had}} \)

 OR
- \(\geq 4 \) jets and one \(W^{\text{typeII}}_{\text{had}} \) and no \(W^{\text{typeI}}_{\text{had}} \)
- \(\geq 1 \) btagged jet (consider also the 2nd highest b-tag weight jet)
- \(H_T^{(a)} > 800 \text{ GeV} \)
- \(p_T(b_1) > 160 \text{ GeV}, p_T(b_2) > 80 \text{ GeV} \)
- \(\Delta R(l, \nu) < 1.2 \)
- \(\min(\Delta R(l, b_{1,2})) > 1.4 \)
- \(\min(\Delta R(W_{\text{had}}, b_{1,2})) > 1.4 \)

\[(a)\ H_T = p_T(j_1) + p_T(j_2) + p_T(j_3) + p_T(j_4) + p_T(l) + E_{T}^{\text{miss}}\]
$T\bar{T} \to Wb + X$ [15]

ATLAS Preliminary

$v_S = 8$ TeV, $\int L \, dt = 14.3$ fb$^{-1}$

$T\bar{T} \to Wb+X$

- 95% CL expected exclusion
- 95% CL observed exclusion

SU(2) doublet SU(2) singlet

* $m_T = 350$ GeV
* $m_T = 400$ GeV
* $m_T = 450$ GeV
* $m_T = 500$ GeV
* $m_T = 550$ GeV
* $m_T = 600$ GeV
* $m_T = 650$ GeV
* $m_T = 700$ GeV
* $m_T = 750$ GeV
* $m_T = 800$ GeV
* $m_T = 850$ GeV

__A Succurro, IFAE Barcelona__

EPS 2013, Stockholm, July 18th-24th
combining $T\bar{T} \to Ht + X$ [9] and $T\bar{T} \to Wb + X$ [15]

ATLAS Preliminary

$\sqrt{s} = 8$ TeV, $\int L \, dt = 14.3$ fb$^{-1}$

$T\bar{T} \to Wb + X$, $T\bar{T} \to Ht + X$ Combination

- 95% CL expected exclusion
- 95% CL observed exclusion

SU(2) doublet SU(2) singlet
Results on chiral quarks: $b' \rightarrow Wt$ (100%) [11]
Results on chiral quarks: $t' \rightarrow Wb$ (100%) [15]
The ATLAS Detector

A general purpose experiment

- vertex detector and central tracker
- superconducting solenoid
- electromagnetic and hadronic calorimeters
- muon spectrometer
- superconducting toroids
- high hermeticity (full ϕ and $|\eta| < 5$)
The ATLAS Detector

A general purpose experiment
- vertex detector and central tracker
- superconducting solenoid
- electromagnetic and hadronic calorimeters
- muon spectrometer
- superconducting toroids
- high hermeticity (full ϕ and $|\eta| < 5$)

In 2012 21.7 fb$^{-1}$ collected at $\sqrt{s} = 8$ TeV!

See ATLAS public page

Will present results obtained with 14.3 fb$^{-1}$ of 2012 data