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Incentive: twofold nature of pion and kaon

In principle, bound states of the basic degrees of freedom of a quantum field

theory emerge as solutions of the homogeneous Bethe–Salpeter equation[1];

the natural targets of the latter are quantum electro- and chromodynamics.

However, conceptual reasons (like the problem of interpretation of time-like

excitations) and practical issues (like the proper embedding of interactions)

provide reasonable grounds to discard relativistic covariance and to seek for

manageable three-dimensional reductions of the Bethe–Salpeter formalism.

Prominent cornerstones along such path of nonrelativistic reduction are the

Salpeter equation[2] and the reduced Salpeter equation[3]; see, e.g., Ref.[4].

For both these relations, powerful solution techniques have been devised[5].

Surprisingly or not, upon solving the Salpeter equation for interactions that

should entail only stable solutions, one obtains also unstable ones[5,6]. This

prompts us to embark on a systematic, ideally analytic study of this puzzle:

first partial results exist for reduced Salpeter equations and more general [7]

instantaneous Bethe–Salpeter equations[8], and even Salpeter equations[9].

The analysis of instabilities is greatly facilitated by analytic knowledge of at

least a few rigorous solutions to compare with. A simple novel approach[10],

starting from states of zero mass, provides not only such solutions but also a

Salpeter treatment of light pseudoscalar mesons as quark–antiquark bound

states which accounts for their (almost) masslessness due to (explicitly and)

spontaneously broken global symmetries of quantum chromodynamics [11].
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Full [2] and reduced [3] Salpeter equations

Assuming the bound-state constituents i = 1, 2 to interact instantaneously

and to propagate as free particles of effective massesmi, the (homogeneous)

Bethe–Salpeter equation reduces to the Salpeter equation; see, e.g., Ref. [4].

For fermion–antifermion states, it reads in their center-of-momentum frame

φ(p) =

∫

d3q

(2π)3

∑

Γ

VΓ(p, q)

(

Λ+
1 (p) γ0 Γφ(q) Γ Λ

−
2 (p) γ0

M −
√

p2 +m2
1 −

√

p2 +m2
2

− Λ−
1 (p) γ0 Γφ(q) Γ Λ

+
2 (p) γ0

M +
√

p2 +m2
1 +
√

p2 +m2
2

)

,

with the projectors for positive and negative energies of particle i defined by

Λ±
i (p) ≡

√

p2 +m2
i ± γ0 (γ · p +mi)

2
√

p2 +m2
i

, i = 1, 2 ;

the interaction terms involve Dirac matrices Γ reflecting the Lorentz nature

of any constituent’s effective coupling and related scalar functions VΓ(p, q).

For any state, the related solution φ(p), its Salpeter amplitude, encodes the

distribution of the relative momentum of this bound state’s constituents, p.

Ignoring negative-energy contributions gives the reduced Salpeter equation
[

M −
√

p2 +m2
1 −

√

p2 +m2
2

]

φ(p)

=

∫

d3q

(2π)3

∑

Γ

VΓ(p, q) Λ
+
1 (p) γ0 Γφ(q) Γ Λ

−
2 (p) γ0 .

For simplicity, let all interactions between bound-state constituents respect

spherical symmetry and thus be describable, for a specific Lorentz structure

Γ⊗Γ, in configuration space by related central potentials VΓ(r), r ≡ |x|, or
in momentum space by the L = 0, 1, . . . Fourier–Bessel transforms defined

in terms of spherical Bessel functions of the first kind jn(z), n = 0,±1, . . . ,

VL(p, q) ≡
2

π

∫ ∞

0

dr r2 jL(p r) jL(q r)VΓ(r) , p ≡ |p| , q ≡ |q| .

This simplifies each Salpeter equation to a set of coupled radial equations[5]

for bound-state mass eigenvaluesM and radial Salpeter components ϕj(p).

2



Rigorous interaction–solution relation [10]

We seek exact analytic solutions of homogeneous Bethe–Salpeter equations

with instantaneous interactions. Constructing, for a given potential V (r), a

single rigorous solution is tantamount to determining, for a chosen solution,

that potential V (r) for which the bound-state equation yields this solution:

The relation between the properties of the bound state and the interactions

experienced by its constituents is established. In order to extract V (r) from

some Salpeter equation in momentum-space representation, we have to cast

this bound-state equation by application of Fourier–Bessel transformations

into configuration-space formulation; needless to say, this will be achievable

only under very favourable circumstances. As first step, we focus to reduced

Salpeter equations and to systems requiring the least conceivable number of

Salpeter components: bound states of spin sum 0. Their Salpeter amplitude

involves just two independent components, which, moreover, by the generic

structure of reduced Salpeter equations become identical, i.e., a single ϕ(p).

The remaining task then is to single out Lorentz structures Γ⊗Γ that allow,

for suitable ϕ(p) ansatzes, the reduced Salpeter equation to be transformed

to configuration space, where the corresponding V (r) can be easily read off.

In the examples presented below (with all dimensional quantities in units of

adequate powers of mass) a non-zero bound-state mass may be absorbed by

V (r); thus, letM = 0 and, for notational convenience,m1 = m2 ≡ m ≥ 0.

The simplest reduced Salpeter equations are those form = 0; among these,

upon introduction of a parameter η = 1, 2, the ones for the Dirac structures

Γ⊗Γ = γµ⊗γµ (η = 2) and Γ⊗Γ = 1
2 (γµ ⊗ γµ + γ5 ⊗ γ5 − 1⊗ 1) (η = 1)

can be subsumed under a common form involving just the function V0(p, q):

2 p ϕ(p) + η

∫ ∞

0

dq q2 V0(p, q)ϕ(q) = M ϕ(p) .

A rather obvious first idea for ϕ(p) is the exponential ϕ(p) ∝ exp(−p); this

yields a potential which remains finite for r → ∞ and thus is not confining:

V (r) =
2

η

(

1− 4

r2 + 1

)

.
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The experimental feature of colour confinement, the nonobservability of the

coloured degrees of freedom of quantum chromodynamics as isolated or free

particles, should be reflected by any Bethe–Salpeter description of hadrons.

A potential that, for r → ∞, rises beyond bounds [V (r) → ∞ for r → ∞]

and thus may be labelled as confining requires an ansatz ϕ(p) which is more

concentrated near r = 0, such as a Gaussian ϕ(p) ∝ exp(−p2) which yields

a potential that involves the “imaginary error function” erfi z ≡ −i erf(i z):

V (r) =
1

η

[(

r − 2

r

)

erfi
(r

2

)

− 2√
π
exp

(

r2

4

)]

, V (0) = − 4

η
√
π
.

V (r) for Γ⊗Γ = γµ⊗γµ, from exponential (left) and Gaussian (right) ϕ(p):
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It is scarcely surprising that bound-state constituents of nonvanishing mass

m 	 0 call for somewhat more careful or sophisticated selection of tentative

solutionsϕ(p). The square root in the relativistic free energy suggests to try

rational functions such as ϕ(p) ∝ (p2+1)−2.The reduced Salpeter equation

for, e.g., the Lorentz structure Γ⊗Γ = 1
2
(γµ ⊗ γµ + γ5 ⊗ γ5 − 1⊗ 1) reads

2
√

p2 +m2 ϕ(p) +

∫ ∞

0

dq q2 V0(p, q)ϕ(q) = M ϕ(p) .

Ifm = 1, the potential corresponding to ϕ(p) ∝ (p2+1)−2 makes use of the

modified Bessel function of order zeroK0(z); for real z → ∞, K0(z) decays

faster than exponential. Thus, V (r) is not confining (but singular at r = 0):

V (r) = −8

π
K0(r) exp r , V (r) −−→

r→0

8

π
ln r , V (r) −−−→

r→∞
0 .
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V (r) for Γ⊗Γ = 1
2
(γµ⊗γµ+γ5⊗γ5−1⊗1), from rational ϕ(p) ∝ (p2+1)−2:
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Ifm > 1, analytic continuation plus contour integration immediately imply

V (r) = −2
√

m2 − 1− 2

r
√
m2 − 1

+
8

π r

∫ ∞

m

dρ ρ exp[(1− ρ) r]

√

ρ2 −m2

(ρ2 − 1)2
,

V (r) −−−→
r→∞

−2
√

m2 − 1 −−−→
m→1

0 .

Here, for r → 0 the two r-dependent portions of V (r) conspire to develop a

merely logarithmic singularity; so V (r) behaves similarly to that form = 1.

For Γ⊗Γ = γ0⊗γ0, even form = 0 both V0(p, q) and V1(p, q) enter into the

reduced Salpeter equation, which renders rather useless the application of a

Fourier–Bessel transformation with unique L to such bound-state equation:

2 p ϕ(p) +
1

2

∫ ∞

0

dq q2 [V0(p, q) + V1(p, q)]ϕ(q) = M ϕ(p) .

However, a closer inspection of how some reduced Salpeter equation may be

derived from its full-Salpeter counterpart provides the clue how to continue:

In the γ0⊗γ0 reduced Salpeter equation, set V1(p, q) equal to V0(p, q) to get

the resulting V0(r), set V0(p, q) equal to V1(p, q) to get the associated V1(r),

and then determine that linear combination of these V0(r) and V1(r), if any,

that fits to the desired solution. An exponential ϕ(p) ∝ exp(−p) thus gives

V (r) = 1− 8

r2 + 1
.
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Ultimate target: pseudoscalar mesons [11]

In general, any full Salpeter equation is represented by an equivalent system

of more than one coupled equations; even for bound states of spin sum 0 the

set consists of two equations. One notable exception to this limitation forms

again the Dirac structure Γ⊗Γ = 1
2 (γµ ⊗ γµ + γ5 ⊗ γ5 − 1⊗ 1); there one

of these relations contains no interactions at all and is thus purely algebraic:

2
√

p2 +m2 ϕ2(p) + 2

∫ ∞

0

dq q2 V0(p, q)ϕ2(q) = M ϕ1(p) ,

2
√

p2 +m2 ϕ1(p) = M ϕ2(p) .

ForM = 0, this problem is identical to that for reduced Salpeter equations;

so, also all arising relations between interactions and solutions are the same.

This serendipity enables us to treat the light pseudoscalar mesons P = π,K

as bound states of quarks and still respect their (pseudo) Goldstone nature.

In the chiral limit of QCD with only spontaneously broken chiral symmetry,

pseudoscalar-meson Bethe–Salpeter amplitudes fall off (for large Euclidean

momenta) like the inverse fourth power of the quarks’ relative 4-momentum

[12]. Analytic accessibility motivates us to model this, at finite momenta, by

(p20+p
2+1)−2. The Salpeter amplitude is found by integration over p0. This

implies ϕ2(p) ∝ (p2+1)−3/2, with Fourier–Bessel transform ϕ(r) ∝ K0(r).

QCD-inspired ansatz for the nonvanishing Salpeter component for massless

pseudoscalar mesons P in momentum (left) and configuration (right) space:
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Ifm = 0, V (r) involves modified Bessel (I0,1) and Struve (L−1,0) functions:

V (r) =
π

2

rL−1(r) + L0(r)− I0(r)− r I1(r)

r K0(r)















−−→
r→0

π

2 r ln r
→ −∞ ,

−−−→
r→∞

√
8 exp r√
π r7

→ ∞ .

For completeness, let’s also considerm 6= 0. Form = 1, we find analytically

V (r) = −π

2

exp(−r)

r K0(r)















−−→
r→0

π

2 r ln r
→ −∞ ,

−−−→
r→∞

−
√

π

2 r
→ 0 .

V (r) for Γ⊗Γ = 1
2 (γµ⊗γµ+γ5⊗γ5−1⊗1) kernel from ϕ2(p) ∝ (p2+1)−3/2

for a pseudoscalar bound state of massless (left) and massive (right) quarks:
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For arbitrarym 6= 0, 1, seeking numerical solutions is our method of choice.
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2 (γµ⊗γµ+γ5⊗γ5−1⊗1) kernel from ϕ2(p) ∝ (p2+1)−3/2
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(short-dashed),m = 1 (solid),m = 0.5 (long-dashed),m = 2 (dotdashed);

massesm < 1 yield confining, massesm ≥ 1 yield not confining potentials:
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