Measurement of the Muon Neutrino Spectrum at the Near Detector T2K IFAE

Raquel Castillo Fernández (IFAE, Barcelona) on behalf of T2K Collaboration

(rcastillo@ifae.es)

We present the T2K near detector constraint on the v_e appearance and v_u disappearance analyses using data collected up to April 11th, 2013. Charged-current (CC) v_u interactions are used to constrain the uncertainties on the flux and cross section parameters that are propagated to Super-K.

A selection of CC events is separated into a charged current without pions (CC0 π), charged current single pion $(CC1\pi^+)$ and a CC Others samples, based on the post-nucleus final state.

The T2K Experiment and the ND280 Detector

T2K is a long baseline neutrino oscillation experiment designed to measure the neutrino oscillation parameters θ_{13} , Δm_{32}^2 and $\sin^2 \theta_{32}$ and neutrino cross sections. An intense v_{μ} beam is produced in J-PARC and directed to the far detector Super-Kamiokande.

The near detector ND280 samples the unoscillated v_µ beam.

ND280 tracker: • 2 active target Fine Grained Detectors (FGDs) •3 Time Projection Chambers (TPCs) •A 0.2T magnetic field allows momentum and charge measurements.

EXCELENCIA SEVERO OCHOA

CC Event Selection with CC0 π , CC1 π^+ and CC Others Sub-Samples

Event Selection The CC event selection requires a negative charged muon- like track starting in the FGD fiducial volume.	symme 1000 100	Data Cofe	500 500 500 500 500 500 500 500 500 500	+ Data CC-0s		ther
•CC inclusive sample divided into enriched samples:	9 500 1000 1500 2000 2500 3000	3500 4000 4500 5000 p _µ (MeV/c)	9 500 1000 1500 2000 2500	3000 3500 4000 4500 5000 p _u (MeV/c)	0 500 1000 1500 2000	2500 3000 3500 4000 4500 5000 p _u (MeV/c)
• CC0 π : no $\pi^{+/-/0}$ in the event	800 6 700 5 700	Data CC-0x CC-1x CC-0ther BKG	250 CC1	π^+ Data CC-Ot CC-OT CC-		Data CC-0x CC-1s CC-1s CC-1s BKG
•CC1 π^+ : no $\pi^{-/0}$, presence of $1\pi^+$ in the event	400	External Other	150	External Cther Z		External No truth
•CCOthers: at least 1 $\pi^{-/0}$, or more that $1\pi^+$ in the event					100 50	CCOther
π^+ -like is selected by TPC Particle identification (PID), Michel –like delayed activity (Michel electron tagging)	0 0.2 0.4 0.6 0.8	1 1.2 1.4 1.6 θ _μ	0 0.2 0.4 0.6 0.8	1 1.2 1.4 ⁺⁺ 1.6 θ _μ	0 0.2 0.4 0.6	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
and FGD PID	$Purity^{CC-X} = \frac{Nevt}{N}$	strue-CC-X SCC-X-sample	CC-X	CC-0 π	СС-π+	CC-Other
π -like is selected by TPC PID	Nevt	S _{CC-X-sample}	ε ^{cc-x}	50.1 %	29.5 %	35.2 %
π^0 -like is selected by $e^{+/-}$ tagging with TPC PID	$\varepsilon^{CC-X} = \frac{Nevts_{C}^{hue-CC-X}}{Nevts_{events-get}^{hue-CC-X}}$	rue–CC–X °C–X–Sample -X merated–in–FGD–F	Purity ^{cc-x}	72.6 %	49.4%	73.8%

