The ARICH detector at Belle II experiment

Yosuke Yusa
Niigata University, Japan

on behalf of Belle II ARICH group
Introduction

Belle is a luminosity frontier B-factory experiment run until 2010. Upgrade for Belle II is ongoing (for 40 times larger luminosity). Particle identification (PID) system will be replaced with new detectors.

Belle PID
Aerogel Cherenkov Counter (ACC). Threshold type PID detector.
→ Effective momentum range is not wide enough for all particles from various B meson decays.

Belle II PID
Two detector systems cover the whole momentum range.
- Barrel part:
 Time Of Propagation counter (TOP).
- **Forward endcap part:**
 Aerogel Ring Imaging
 CHerenkov detector (ARICH).
Overview of ARICH detector

- Identify particle by difference of Cherenkov angle emitted in aerogel radiator.
 Cherenkov angle \(\cos \theta_C = 1/n\beta \)
 \((n: \text{aerogel refractive index, } \beta: \text{particle velocity})\)

- Proximity focusing due to limited space between drift chamber and electromagnetic calorimeter.

- Aerogel radiator in the focusing configuration
 (2 layers of aerogel with different refractive indices).
 → Increase photon yield without degrading the single photon resolution.
Requirement for system

- Requirement from physics analysis:
 \(K/\pi \) separation is essential for many \(B \) decay modes sensitive to new physics: \(B^0 \rightarrow K^{*0}(\rightarrow K^+\pi^-)\gamma \), \(B^0 \rightarrow \rho^0(\rightarrow \pi^+\pi^-)\gamma \), \(B^0 \rightarrow K^+\pi^-/\pi^+\pi^- \) ...

Target: \(K/\pi \) separation at \(>5\sigma \) confidence level @ \(p = 4 \) GeV/c.

Separation = \(\Delta \theta_c \sqrt{N_{p.e.}/\sigma_c} \)

\(\Delta \theta_c \): Difference of Cherenkov angle between \(K \) and \(\pi \) (~23 mrad)

\(\sigma_c \): Observed Cherenkov angle resolution.

\(N_{p.e.} \): Detected number of photo electron. \(\Rightarrow \) Highly depends on detector performance.

- Survives in Belle II environment for 10 years.
 - Radiation hardness both for \(\gamma/\)neutron.
- Works in high background environment.
- Covers acceptance of other sub-detectors in endcap region.
 → Round shape detector.
Photon detector

- Detect photon position with good resolution.
- Number of detected Cherenkov photon is not large. (~10 photons)

⇒ Hybrid Avalanche Photo Detector (HAPD) is developed with Hamamatsu Photonics K. K.
5 mm pitch pixelated 144 channels cathode APD. High gain with hybrid amplification process. 420 sensors are used in total for ARICH.

- Bi-alkali photocathode
- Bombardment gain = 1500
- ~20mm
- ~8kV
- Multi-channel APD
- APD gain = 50

⇒ Total gain ~7×10^5.
HAPD front-end readout

Signal from HAPD is converted to hit information by pre-amplifier, shaper and discriminator in front-end ASIC. → send to Belle II global DAQ readout through merger circuit.

Settings of ASIC components (gain, peaking time, offset level) are controlled by FPGA.

Front-end electronics design is close to final version and production will start soon.
Aerogel radiator

- Distance between aerogel and HAPD window is 200 mm. ⇒ refractive index ~1.04-1.06
- Need to be transparent to suppress photon scattering.
Target transmission length: >40 mm (@\(\lambda\) = 400 nm).
→ Introduce new technique to produce high transparency and refractive index aerogels. (pin-hole drying)

![Graphs showing transmission length vs. refractive index with and without pin-hole drying.](image)

Without pin-hole drying

With pin-hole drying
HAPD radiation hardness

Requirement for 10 years Belle II operation:
HAPD should keep performance for irradiation of
- 1000 Gy γ
- 1.0×10^{12} neutron / cm2

APD degradation scenarios

- For γ:
 Charge around structure on APD surface.
 \rightarrow Degrade breakdown HV and can not reach enough APD gain.

- For neutron:
 Neutron induce lattice defects in bulk and leakage current increases.
 \rightarrow S/N becomes worse.

\Rightarrow Perform irradiation tests and determine APD design and materials to minimize the effect.
HAPD radiation hardness test

Changing APD structure (active area window film material, w/ or w/o alkali protection layer/intermediate electrode...) and \(\gamma \) irradiation tests have been done.

\(\Rightarrow \) Changing the structure on APD surface prevents breakdowns.

Neutron irradiation setup @ MLF in JPARC

\(\Rightarrow \) Thinner P/P+ layer structure improves S/N.
S/N can be further improved by increasing of HV and optimization of shaping time in front-end electronics.
Beam test

Setup prototype ARICH with 6 HAPDs in real geometry and check performance for hadron beam @SPS in CERN and electron beam @DESY and Fuji exp. hall in KEK.

Several setups and checks of performance.
- Different refractive index of aerogel.
- At different track incident angles.
- Readout front-end ASIC settings.
- Neutron/γ irradiated HAPD.

Picture in light shielding box
Beam test result

- Simple performance estimation from cumulative Cherenkov angle distribution:

\[\Delta \theta_c = 14.1 \text{ mrad}, N_{p,e} = 11.4. \]

\[\Rightarrow K/\pi \text{ separation} = 5.5\sigma \]

(SP5 120 GeV/c hadron beam, incident angle = 0° case, similar for non-zero incidence)

- Neutron/\gamma irradiated HAPD works well after HV/readout parameter tuning.
(preliminary)
Validation system for HAPD

Photocathode Quantum efficiency (QE) measurement system
Illuminate monochromatic spot light and measure photoelectric current together with reference photo diode.
- 2D scan on whole effective area.
- Wavelength dependence.

<table>
<thead>
<tr>
<th>Year</th>
<th>HAPD R&D</th>
<th>Electronics R&D</th>
<th>Mechanical structure test & design</th>
<th>Aerogel radiator R&D</th>
</tr>
</thead>
<tbody>
<tr>
<td>2011</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2012</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2013</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2014</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2015</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- APD spec frozen
- Installation

All produced 450 HAPDs are checked before installation.
Summary

- For endcap PID in Belle II, ARICH detector will be installed.
 Identify charged particles using information of Cherenkov ring image.

- To detect Cherenkov photon position with high efficiency, a new device (HAPD) has been developed.
 Hybrid amplification with electric field between photocathode and sensor part
 and 5 mm pixelated 144 channels APD (total gain $\sim 7 \times 10^5$).

- HAPD design is determined by results of radiation hardness tests.
 HAPD samples after neutron/γ irradiation corresponding to 10 years Belle II
 operation perform well in beam test.

- New technique was introduced for aerogel production process for
 high transparency/refractive index sample.

- Beam test result with prototype ARICH satisfies requirement from physics
 motivation.
 Achieve $>5\sigma$ separation power for K and π. (Simple estimation from single photon
 Cherenkov angle resolution and number of detected photon hits)

- Production of final version electronics and HAPD will start soon and
 ARICH will be installed at beginning of 2015.
Belle experimental data (657 million B̅B sample)

ΔE: energy difference between reconstructed B° and beam

Belle II 7.5 ab⁻¹ expectation from MC
with Belle PID

with Belle II PID (TOP+ARICH)
ARICH readout electronics

- Front-end board with 4 ASICs and Spartan6 FPGA
- Merger board prototype with Virtex5 FPGA
Wavelength dependence of Cherenkov photon

Number of Cherenkov photon

200 250 300 350 400 450 500 550 600
Wavelength (nm)

n = 1.05, c = 2\times 10^8 \text{ m/s}
Typical HAPD performance

(data sheet)

<table>
<thead>
<tr>
<th>Quantum efficiency</th>
<th>KA0041</th>
</tr>
</thead>
<tbody>
<tr>
<td>400nm</td>
<td>26.2%</td>
</tr>
<tr>
<td>peak</td>
<td>28.9%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Maximum high voltage</th>
<th>~8500 V</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bad channel</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>None</td>
</tr>
<tr>
<td>B</td>
<td>None</td>
</tr>
<tr>
<td>C</td>
<td>None</td>
</tr>
<tr>
<td>D</td>
<td>ch1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Maximum high voltage for each APD chip</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A–ch22</td>
<td>161900 (8.5kV, 377V)</td>
</tr>
<tr>
<td>B–ch22</td>
<td>164600 (8.5kV, 368V)</td>
</tr>
<tr>
<td>C–ch22</td>
<td>104000 (8.5kV, 364V)</td>
</tr>
<tr>
<td>D–ch22</td>
<td>162500 (8.5kV, 377V)</td>
</tr>
</tbody>
</table>

- Avalanche gain (chipA–ch22)
- Leakage current (chipA–all)

Photocathode Voltage: ~8kV
AD Reverse Bias Voltage: 341V
Guard Voltage: +200V
Amplifier: Clear-Pulse 580K
Light Source: LED 470nm, 2kHz

HAPD performance

<table>
<thead>
<tr>
<th>item</th>
<th>typical</th>
<th>requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>QE</td>
<td>λ=400nm 28%</td>
<td>>=24%</td>
</tr>
<tr>
<td>bias voltage</td>
<td>250-500V</td>
<td></td>
</tr>
<tr>
<td>leakage current</td>
<td>each ch at Vb-10V</td>
<td><= 1μA</td>
</tr>
<tr>
<td>avalanche gain</td>
<td>each ch at Vb-10V</td>
<td>>=30</td>
</tr>
<tr>
<td>HV</td>
<td>-8.5kV</td>
<td><= 300pA</td>
</tr>
<tr>
<td>bombardment gain</td>
<td>-8kV 1800</td>
<td>>=1500</td>
</tr>
<tr>
<td>Total gain</td>
<td>-8kV at gain=30</td>
<td>>=45000</td>
</tr>
</tbody>
</table>

of dead channels ≤ 10
KA058

Film A
Electrode ○
P+ thin
Neutron 8.5*10^11

*measured by SA03(X-FAB,QFP) (shaping time 100ns)

E-PID summary

Before Gamma Irradiation

- **chip A-34ch: 326.5V(17.26μA)**
- HV:-8.5kV
- **noise(gaus0) = 5464.03[e-]**
- **2pe - 1pe = 39137.45[e-]**
- **S/N(2pe-1pe/sigma0) = 7.16**

After Gamma Irradiation

- **chip A-34ch: 326.5V(17.02μA)**
- HV:-8.5kV
- **noise(gaus0) = 5665.96[e-]**
- **2pe - 1pe = 39763.47[e-]**
- **S/N(2pe-1pe/sigma0) = 7.02**

- Noise Level & Total Gain dose not change before and after irradiation.
Registration is now opening.
http://rich2013.kek.jp

Abstract deadline is 31 July.