Operation and performance of the ATLAS Operation and performance of the ATLAS liquid argon electromagnetic calorimeters liquid argon electromagnetic calorimeters **EPS Poster Session – Stockholm, 18-24th July 2013**

Temperature homogeneity and uniformity 508 monitoring probes in various locations -2%/K change of energy scale (drift speed) \rightarrow excursions must be kept below 100 mK ATLAS P

Uniformity **~60 mK**, very small excursions \rightarrow no degradation of energy resolution

Data 2012, $\sqrt{s} = 8$ TeV, $\int L dt = 13.0$ fb⁻¹

ATLAS Prelimina

 90 \rightarrow Data L dt ~ 770 pb $\frac{1}{0.5}$

ATLAS Preliminary

 96

 92

Stability during operation

Data taking efficiency

Energy calibration for electrons and photons

Sampling calorimeter : lead absorbers + liquid argon as ionized medium

Accordion structure : excellent uniformity in φ

Segmentation in precision region (|η|<2.5) :

Trips of HV supply modules responsible for **0.46% ATLAS online recording efficiency : >94%** for 2011+2012 \rightarrow very noisy environnement, unknown HV on electrodes \rightarrow EM calorimeter contribution negligible Reduced wrt 2011 losses (1%) thanks to new HV modules **Data quality:** fraction of recorded data good for physics tolerating temporary current overload, avoiding HV trip **Total EM calo DQ losses in 2012** : **0.88%** recorded data **Quality factor** very valuable tool to spot cell noise \rightarrow used previous years experience (2011 inefficiency 3.3%) Comparing sampled Q^2 **Operational EM calo fraction: 99.9%**of channels signal and ref. shapes $nDoF$

b noise, negligible at high $E₊$ Electronic (preamplifiers) + pile-up

-
- final cluster 3×7 (barrel) or 5×5 (end-cap)
- No track → **unconverted photon**
- final cluster 3×5 (barrel) or 5×5 (end-cap) Track + conversion vertex → **converted photon**
- same cluster as electron
- 2012 : refitted tracks with Brehmsstrahlung emission model
- \rightarrow improved efficiency, especially low E_T / high η

24/07 23/08 22 **Energy resolution** also measured from Z peak Effective constant term, C_{data} ubsystem n -range $1.2\% \pm 0.1\% (\text{stat})_{-0.6\%}^{+0.5\%} (\text{syst})$ $|\eta| < 1.37$ **EMB** $1.8\% \pm 0.4\%$ (stat) $\pm 0.4\%$ (syst) MEC-OW $1.52 < |\eta| < 2.47$ **EMEC-IW** $2.5 < |\eta| < 3.2$ $3.3\% \pm 0.2\%$ (stat) $\pm 1.1\%$ (syst) $3.2 < |\eta| < 4.9$ $2.5\% \pm 0.4\% (\text{stat})^{+1.0\%}_{-1.5\%} (\text{syst})$ FCal Future gains by improved material mapping

Data 2012, $\sqrt{s} = 8$ TeV, $Ldt = 13.0$ fb 0.996 **ATLAS** Prelimin $\frac{1}{14}$ 16 18 20 22 24 26 28

Cluster calibration corrects for fine geometry effects and accounts for various losses :

Electron and photon identification

Electron and photon reconstruction

Pre-clusters 3×5 middle cells, local E_{_r maximum, E_r>2.5 GeV}

 \rightarrow excellent angular resolution, achieved in particular by vertex pointing with front and middle layer cluster barycenters

 \rightarrow negligible vertex contribution to invariant mass resolution (overall 1.7 GeV)

Calorimeter energy resolution:

σ /E_τ = a/ \sqrt E_τ ⊕ b/E_τ

dedicated samples recording energy deposits in all passive detector material

a stochastic term **~10%**

Liquid argon purity Impurity level must be

Shower particles stopped in absorber

c constant term, design **0.7%** Inhomogeneities in cell geometry, or temperature, material in front of calorimeter, local mis-calibration

Absolute energy scale determined *in situ* from constructed Z→ee invariant mass $\mathsf{cross}\text{-}\mathsf{check}: W\rightarrow\mathsf{ev}$ (E/p), J/ ψ (low energy) a 2000
- 1800 **-** *ATLAS* Data 2010, √s=7 TeV, ∫*L*dt≈40 pb⁻¹ **ATLAS** Preliminary Data 2011, $\sqrt{s} = 7$ TeV, $Ldt = 4.6$ fb⁻¹ σ_{atom} =1.76 ± 0.01 GeV = 3083±1 MeV
= 132±2 MeV
= 134±1 MeV $ln|< 2.47$ σ_{tot} = 1.59 ± 0.01 GeV — Data
— Fit result
<mark>□</mark> Z→ee MC \div Data Scale corrections **~2%** barrel, **~4%** end-caps

Angular resolution(design): Δη~**3 10-4** , Δφ~**1mrad**

Electronic calibration performed daily by injecting calibration signal, checking :

– Pedestal and noise (no signal) – Gain

 $-$ Shape \rightarrow recompute OFCs (weekly)

 \rightarrow excellent energy resolution

Stability of pedestals over 2012, all channels:

FEBs aligned at O(100 ps), to be compared with nominal bunch crossing period of 25 ns

Object level (electron) **~300 ps**, including 220 ps beam spread

Application : noise cleaning (e.g. cosmics), long-lived particles

$\frac{8}{9}0.40$ $\sigma_t(E) = \sqrt{\left(\frac{p_0}{E}\right)^2 + p_1^2}$ 0.35 0.30 0.25 $\frac{1}{5}$ $\overline{25}$ 30 35 40 -20 Cell Energy [GeV]

ATI AS Preliminary LAr Calorimeter

 $s = 7$ TeV pp Collisions, 201

≣0.45⊧

~173k readout channels, 50% front, 30% middle

The electromagnetic calorimeter is a key component for the achievement of the ATLAS physics goals. It must provide an excellent energy resolution in a vast domain (1 GeV – several TeV) as well as great abilities for electron and photon identification. This poster presents the performances reached in the first 3 years of data taking at the LHC.

> H→4e requires high efficiency electron ID, and good energy resolution

→ Photon energy scale uncertainty **0.55%**, main contribution to mass measurement

Very stable **~0.03 ADC**, gain **0.005-0.03%**

kept below 1000 ppb

Achieve **200 ppb** in barrel, **140 ppb** in end-caps

Timing