EPS Poster Session - Stockholm, 18-24th July 2013 Operation and performance of the ATLAS liquid argon electromagnetic calorimeters

The electromagnetic calorimeter is a key component for the achievement of the ATLAS physics goals. It must provide an excellent energy resolution in a vast domain (1 GeV – several TeV) as well as great abilities for electron and photon identification. This poster presents the performances reached in the first 3 years of data taking at the LHC.

Sampling calorimeter : lead absorbers + liquid argon as ionized medium

Accordion structure : excellent uniformity in φ

Segmentation in precision region ($|\eta| < 2.5$) :

control energy losses before calorimeter

~173k readout channels, 50% front, 30% middle

Stability during operation

Electronic calibration performed daily by injecting calibration signal, checking :

- Pedestal and noise (no signal) – Gain

- Shape \rightarrow recompute OFCs (weekly)

Stability of pedestals over 2012, all channels:

Very stable ~0.03 ADC, gain 0.005-0.03%

Liquid argon purity Impurity level must be

kept below 1000 ppb

Achieve 200 ppb in barrel, 140 ppb in end-caps

Quality factor very valuable tool to spot cell noise

Temperature homogeneity and uniformity

508 monitoring probes in various locations

-2%/K change of energy scale (drift speed)

0.05 0.1 0.15 0.2 0.25 0.3

Uniformity ~60 mK, very small excursions

 \rightarrow no degradation of energy resolution

 \rightarrow excursions must be kept below 100 mK

ATLAS Pr

$Q^2 = -\frac{1}{2}$	1 nDoF	$\sum_{i=1}^{n_{samples}} -$	$\frac{(A_i^{data} - A_i^{pred})^2}{\sigma_{noise}^2 + \sigma_{pred}^2}$	Comparing sampled signal and ref. shapes

	ATLAS Preliminary	10 ⁶ M
1.5		блан La ⁵ D1
00.5	Dti -	104
-1-		10 ³

Bursts of coherent noise, mostly in end-caps, with recurrent structure – only seen in presence of collisions – verv short duration (typically 5µs) – frequent at high luminosity, ~1/min

ATLAS Preliminary 10^{6}

Timing

FEBs aligned at O(100 ps), to be compared with nominal bunch crossing period of 25 ns

Object level (electron) ~300 ps, including 220 ps beam spread

Application : noise cleaning (e.g. cosmics), long-lived particles

မို ၈.40 = 7 TeV pp Collisions, 201 $\sigma_{t}(E) = \sqrt{\left(\frac{P_{0}}{E}\right)^{2} + p_{1}^{2}}$ 0.35 0.30 0.25 30 35 40 20 25 Cell Energy [GeV]

____ Data L dt ~ 770 pb

15

0.5

-0.5

10-3

ATI AS Preliminary

LAr Calorimeter

ĕ0.45∙

Pre-clusters 3×5 middle cells, local E₊ maximum, E₊>2.5 GeV

- Track found in $\Delta \eta \times \Delta \phi = 0.05 \times 0.1 \rightarrow$ electron
- final cluster 3×7 (barrel) or 5×5 (end-cap)
- No track \rightarrow **unconverted photon** final cluster 3×5 (barrel) or 5×5 (end-cap)
- Track + conversion vertex \rightarrow converted photon
- same cluster as electron
- 2012 : refitted tracks with Brehmsstrahlung emission model

ATLAS Preliminar

0.5 1 1.5 2 2.5 3 3.5 4 4.5

FCal1
FCal2
FCal3
HEC1
HEC2
HEC3
HEC4

 \rightarrow improved efficiency, especially low E₁ / high η

Energy calibration for electrons and photons

Calorimeter energy resolution:

$\sigma/E_{+} = a/\sqrt{E_{+} \oplus b/E_{+} \oplus c}$

a stochastic term ~10% Shower particles stopped in absorber

b noise, negligible at high E₋

Electronic (preamplifiers) + pile-up

c constant term, design 0.7% Inhomogeneities in cell geometry, or temperature, material in front of calorimeter, local mis-calibration

Cluster calibration corrects for fine geometry effects and accounts for various losses :

$\mathbf{E} = \mathbf{E}_{\text{front}}$	Material in front of calorimeter			
+ E _{calo}	Cluster + out-of-cluster			
+ E _{back}	Longitudinal leak in hadronic calorimet			
Contributions parametrized by functions of η ,				

longitudinal barycenter, and fraction of energy in presampler

Simulation used to tune parametrization, using dedicated samples recording energy deposits in all passive detector material

Angular resolution(design): Δη~**3 10**⁴, Δφ~**1mrad**

Absolute energy scale determined in situ from reconstructed Z→ee invariant mass Cross-check : $W \rightarrow ev$ (E/p), J/ ψ (low energy) 1800 ATLAS Data 2010, √s=7 TeV, Ldt≈40 pb⁻¹ ATLAS Preliminary Data 2011, \s=7 TeV, Ldt = 4.6 fb-1

ATLAS Preliminar

98

96

92

90

Scale corrections ~2% barrel, ~4% end-caps

Exc	cellent st	ability re	garding pile-up and time :
1.002 _E		فسلسلسلط	
1.0015	RMS: 0.019% RMS: 0.015%	● W→ev E/p ○ Z→ee inv. mass	B 1.004 RMS: 0.023% ● W →ev E/p ≥ 1.003 RMS: 0.033% Z→ee inv. mass
1.0005			₩ 1.002 23 1.001
0.9995	[↓] [↓] [↓] [↓] [↓] [↓]	• • • •	
0.999	- 2010 - (1008-1	0.998
0.9985 Da	LAS Preliminary	J.J. U ID	0.996 ATLAS Preliminary

0.996 Data 2012, Ns=8 TeV, JLdt ATLAS Preliminary 0 995 14 16 18 20 22 24 26 28 26/03 25/04 25/05 24/06 24/07 23/08 22/0

Energy resolution also measured from Z peak Effective constant term, c_{data} Subsystem n-range $1.2\% \pm 0.1\% (\text{stat})^{+0.5\%}_{-0.6\%} (\text{syst})$ $|\eta| < 1.37$ EMB $1.8\% \pm 0.4\% ({\rm stat}) \pm 0.4\% ({\rm syst})$ EMEC-OW $1.52 < |\eta| < 2.47$ EMEC-IW $2.5 < |\eta| < 3.2$ $3.3\% \pm 0.2\%$ (stat) $\pm 1.1\%$ (syst) $2.5\% \pm 0.4\%(\text{stat})^{+1.0\%}_{-1.5\%}(\text{syst})$ $3.2 < |\eta| < 4.9$ FCal Future gains by improved material mapping

Electron and photon identification

Implication in Higgs boson mass measurement

Particularly important in $H \rightarrow \gamma \gamma$ search :

Large background (jj+yj) requires excellent photon ID

 Narrow invariant mass resonance needed to disentangle signal from continuous irreducible background

 \rightarrow excellent energy resolution

 \rightarrow excellent angular resolution, achieved in particular by vertex pointing with front and middle layer cluster barycenters

 \rightarrow Photon energy scale uncertainty **0.55%**, main contribution to mass measurement

 \rightarrow negligible vertex contribution to invariant mass resolution (overall 1.7 GeV)

 $H \rightarrow 4e$ requires high efficiency electron ID, and good energy resolution

Julien Maurer (CPPM/IN2P3), on behalf of the ATLAS Liquid Argon Calorimeter Group