BSM Higgs Searches with ATLAS

Extending the Standard Model

Remaining open questions:

- CP violation in the early universe
- Dark Matter
- Hierarchy problem, naturalness, fine-tuning
- Relation between lepton and quark charges

- Higgs boson discovered at LHC
- Couplings and quantum numbers appear SM-like
- SM is complete
- Measurements of coupling strengths narrow parameter space of new physics models.
 - → talk by Oscar Stal

solution by extending SM most prominent: supersymmetry

Most theories beyond SM include an extended scalar sector.

Two Higgs Doublet Models (2HDMs)

• The softly broken Z₂ symmetric 2HDM potential:

for a review, see for example: Branco et al. arXiv: 1106.0034

 $\mathcal{V} = m_{11}^2 \Phi_1^{\dagger} \Phi_1 + m_{22}^2 \Phi_2^{\dagger} \Phi_2 - [m_{12}^2 \Phi_1^{\dagger} \Phi_2 + \text{h.c.}] + \frac{1}{2} \lambda_1 (\Phi_1^{\dagger} \Phi_1)^2 + \frac{1}{2} \lambda_2 (\Phi_2^{\dagger} \Phi_2)^2$

$$+\lambda_3(\Phi_1^{\dagger}\Phi_1)(\Phi_2^{\dagger}\Phi_2) + \lambda_4(\Phi_1^{\dagger}\Phi_2)(\Phi_2^{\dagger}\Phi_1) + \left\{ \frac{1}{2}\lambda_5(\Phi_1^{\dagger}\Phi_2)^2 + \text{h.c.} \right\} ,$$

- Two complex Higgs doublets → five physical states:
 h (light neutral CP even), H (heavy neutral CP even), A (CP odd), H[±]
- Minimal Supersymmetric Model (MSSM) is specific type-II 2HDM (at tree level). Not using Z₂ symmetry.

Adding one singlet

add one electroweak singlet H

nMSSM model

adds a superfield resulting in 7 physical states: h₁, h₂, h₃, a₀, a₁, H[±]

Triplet models

- Use complex triplet instead of doublet: h⁰, H^{±,} H^{±±}
- Explains neutrino masses and mixing

Neutral Higgs boson searches

- → MSSM A / H / h → $\tau^+\tau^-$ / $\mu^+\mu^-$, JHEP02 (2013) 095 4.8 fb⁻¹ @ 7 TeV
 - → Generic 2HDM in H → W⁺W⁻ → $e_{\nu\mu\nu}$, ATLAS-CONF-2013-027, 13 fb⁻¹ @ 8 TeV
 - ZH production with H → invisible, ATLAS-CONF-2013-011, 4.7 fb⁻¹ @ 7 TeV / 13 fb⁻¹ @ 8 TeV
 → talk by Johannes Elmsheuser

→•	nMSSM H \rightarrow a ⁰ a ⁰ \rightarrow $\gamma\gamma\gamma\gamma$, ATLAS-CONF-2012-079,	4.9 fb ⁻¹ @ 7 TeV	
•	nMSSM $a^1 \rightarrow \mu^+\mu^-$, ATLAS-CONF-2011-020,	37 pb ⁻¹ @ 7 TeV	
	Fermiophobic h $\rightarrow \gamma\gamma$, Eur. Phys. J. C (2012) 72:2157,	4.9 fb⁻¹ @ 7 TeV	

BERGISCHE

UNIVERSITÄT WUPPERTAL

- light Higgs: m(H[±]) < m_t
- Use leptonic and hadronic τ decays.
- Embedding method to estimate true τ backgrounds
- Interpretation in m_h^{max} scenario of MSSM

$H^+ \rightarrow \tau \nu$ using Lepton Universality

160

BERGISCHE

UNIVERSITÄT WUPPERTAL

- Investigate lepton universality in top-quark decays to search for H[±]
- Ratio: $R_{e+\mu} = \frac{\mathcal{N}(e+\tau_{\text{had}}) + \mathcal{N}(\mu+\tau_{\text{had}})}{\mathcal{N}(e+\mu) + \mathcal{N}_{\text{OB}}(\mu+e)}$ depends on B (t \rightarrow b + H[±])
- Combination of R_{e+u} and τ_{had} +jets analyses:

BERGISCHE UNIVERSITÄT Neutral Higgs Bosons in the MSSM

• Type II 2HDM describes Higgs sector of the MSSM.

Branching Ratio (H)

In the MSSM the Higgs sector is defined by 2 parameters: tan(β) and m_A

Use q_{μ} -value test statistics based on max. likelihood fit to $m_{\tau\tau}^{MMC}$ calculated with Missing Mass Calculator technique to scan M_A and tan(β) parameter space.

9

h / H / A $\rightarrow \mu^+\mu^-$

JHEP 02 (2013) 095

- Small branching ratio
- clean signal: narrow peak (2.5% to 3% resolution) in m_{µµ} distribution
- Divide in b-tagged and b-vetoed samples.

	<i>b</i> -tagged sample	b-vetoed sample	
Mass Point	$m_A = 150 \mathrm{GeV}$		
Fit Range	110200GeV		
Background	980 ± 50	35900 ± 600	
Signal $m_A = 150 \mathrm{GeV}, \tan \beta = 40$			
$b\bar{b}(h/A/H \rightarrow \mu\mu)$	$28 \pm 2 {}^{+3}_{-4}$	$271 \pm 22 \; {}^{+31}_{-40}$	
$gg \rightarrow h/A/H \rightarrow \mu\mu$	$2.3 \pm 0.3 \pm 0.4$	$141 \pm 10 \ ^{+22}_{-20}$	
Data	985	36044	

- Exclusion limits in the MSSM parameter space of M_A and $tan(\beta)$.
- Using cross sections in the m_h^{max} scenario with $\mu > 0$.
- Tightest constraint at $m_A = 130 \text{ GeV}$: $tan(\beta) > 9.3$

Generic Two-Higgs-Doublet Models

Two types of 2HDMs with natural flavour conservation:

- type I 2HDM: all quarks couple to just one of the Higgs doublets
- type II 2HDM: Q = +2/3 right-handed quarks couple to one Higgs doublet and Q = -1/3 right-handed quarks couple to the other.

$y_{2 m HDM}/y_{ m SM}$	Type I	Type II
$\xi_h^{ m v}$	$\sin(\beta - \alpha)$	$\sin(eta-lpha)$
ξ^u_h	$\cos \alpha / \sin \beta$	$\cos lpha / \sin eta$
ξ^d_h	$\cos lpha / \sin eta$	$-\sin lpha / \sin eta$
$-\xi_H^{ m v}$	$\cos(\beta - \alpha)$	$\cos(\beta - \alpha)$
ξ^u_H	$\sin lpha / \sin eta$	$\sin lpha / \sin eta$
ξ^d_H	$\sin \alpha / \sin \beta$	$\cos lpha / \cos eta$

Relevant couplings

Tree-level couplings of neutral Higgs bosons to vector bosons, up-type and down-type quarks in type I and type II 2HDMs.

12

Neural Network Discriminants

- Use CL_s method to compute confidence level for each triplet (tan β , cos α , m_H)
- Plot exclusion contours in the $\cos \alpha$ vs. m_H plane

expected limits only

- Consider: $h \rightarrow a^0 a^0 \rightarrow \gamma \gamma \gamma \gamma$ decay chain
- a⁰ assumed to be ultra-light: 100 400 MeV
- Photons from a^0 decay are collimated $\rightarrow m_{\gamma\gamma}$ discriminant
- Event selection is close to, but looser than SM h $\rightarrow \gamma\gamma$ analysis.

- Higgs Boson discovery at the LHC prompts deeper investigations of the nature of the new particle.
- Searches for additional neutral and charged Higgs bosons.
- Large regions of MSSM parameter space are excluded, but there are still open regions of parameter space compatible with the observed Higgs at 125 GeV.
- Searches beyond the MSSM:
 - Generic 2HDM
 - nMSSM
- Stay tuned! Analyses with full Run I data set are ongoing.

BACKUP

Generic case of a single scalar boson ϕ .

Produced either in gluon-fusion or b-associated production.

BERGISCHE JNIVERSITÄT WUPPERTAL

Higgs to Invisible Particles

-2013-01

 $\overline{\mathsf{A}}$

20

m_н [GeV]

- Conjecture: decay to stable or long-lived weakly interacting particles, e.g. dark matter particles
- Main background: $ZZ \rightarrow II_{VV}$ continuum production
- ML fit to E_{τ}^{miss} distribution
- Investigate 2 scenarios:
 - Observed Higgs at m_{H} = 125 GeV decays 1) to invisible particles Observed limit: $BR(H \rightarrow invisible) < 65\%$
 - An additional Higgs boson decays 2) invisibly

