Searches for R-parity Violated Supersymmetry at CMS

On behalf of the CMS Collaboration

Altan Cakir DESY EPS-HEP 2013, Stockholm, Sweden.

Supersymmetry and R-parity

SUSY bosons

SUSY fermions

• SUSY postulates super-partners for all SM particles:

 \Leftrightarrow

 \Leftrightarrow

- Definition: R-parity \rightarrow R_p = (-1)^{3B+L+2s}
 (B)aryon and (L)epton number and s for particle spin
- In case of a R-parity conserving theory
 - \rightarrow SM particle fields : R_p = +1
 - \rightarrow SUSY particle field : R_p = -1

phenomenologically means:

SM fermions

SM bosons

- \rightarrow Superpartners produced in pairs
- \rightarrow Lightest Supersymmetric particle (LSP) stable
- ightarrow Proton stabilized

Generic SUSY Searches: R-parity conserved scenario Details can be seen in the following talks:

 $\tilde{\chi}_2^0$

- Direct stop search, Hongxuan Liu
- Search for multiple W and b quarks, Keith Ulmer
- Searches for Gauginos and Sleptons, L. Shchutska,
- Search for natural SUSY, S. Sekmen,
- Search for inclusive SUSY, C. Autermann

If R-parity is not conserved?

R-Parity Violation in Supersymmetry?

- Proton decay involves violating both lepton and baryon number simultaneously, no single renormalizable R-parity violating (RPV) coupling leads to proton decay.
 - ✓ R-parity violation \rightarrow one set of the R-parity violating couplings are non-zero!

The most general superpotential \rightarrow W = W_{MSSM} + W_{RPV}

 $W_{MSSM} = h^{e}_{ij}L_{i}H_{1}\overline{E}_{j} + h^{d}_{ij}Q_{i}H_{1}\overline{D}_{j} + h^{u}_{ij}Q_{i}H_{2}\overline{U}_{j} + \mu H_{1}H_{2}$

$$W_{RPV} = \frac{1}{2} \frac{\lambda_{ijk} L_i L_j E_k}{\lambda_{ijk} L_i L_j Q_j D_k} + \frac{1}{2} \frac{\lambda_{ijk}}{\lambda_{ijk} U_i D_j D_k} + \kappa_i L_i H_2$$

- RPV couplings can violate lepton and baryon number conservation
- Can result in **two, three and four body decays** of supersymmetric particles to Standard Model particles
- Couplings chosen to have **prompt decay**, and to satisfy constraints from neutrino mass and proton decay.

Searches for R-parity violated Supersymmetry at CMS

(1) Search for stop in R-parity-violating supersymmetry with three or more leptons and b-tags \rightarrow CMS-PAS-13-003^{*}

2 Search for RPV SUSY in the 4-lepton final state in pp collisions at 8 TeV → CMS-PAS-13-010^{*}

Total weight : Overall diameter : Overall length : Magnetic field :

: 14000 tonnes : 15.0 m : 28.7 m : 3.8 T

https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsSUS

1 Stop in RPV Supersymmetry

- Focus on stop pair production, where stop mass changes between 300 GeV to 1250 GeV
- Search for RPV couplings that produce multi-lepton final states

W	$_{\rm RPV} = \frac{1}{2}$	λ _{ijk} L _i L _j E _k + λ	∖`_{ijk}L iQjD _k +	$-\frac{1}{2} \lambda_{ijk} U_i D_j \overline{D}_k + \kappa_i L_i H_2$
	Le	eptonic	Mixed	Hadronic \tilde{b}_R
couplings	LLE 122	LLE 233	LQD 233	$\tilde{t} \tilde{f}$
Decay products for stop	llvt	ITvt, TTvt	Vbbt, lbtt	
Stop mass (GeV)	700 - 1250	700 - 1250	300 - 1000	
Bino mass (GeV)	100 - 1300	100 - 1300	200 - 850	
				$\tilde{t}_{-} - \tilde{f}_{-} < \tilde{f}_{-} $

1 Event Classification and Results

- Using 19.5/fb, full data set from 2012 CMS data
- \blacktriangleright Light lepton p_T must pass 20/10/10(/10) GeV threshold
- Require at least one tagged b-quark jet
- \blacktriangleright Remove events with OSSF* di-lepton mass on Z and below 12 GeV J/ Ψ events
- > Define search regions in different S_{T} bins,

$$\begin{split} S_{T} &= MET + HT + P_{T}^{\ leptons} \\ MET &= \text{Missing Transverse Energy} \\ HT &= \text{Scalar sum of all selected Jet } P_{T} \\ P_{T}^{\ leptons} &= \text{Selected leptons } P_{T} \end{split}$$

	#Leot	onsler,	ulepton			10 ⁻¹	0-300	300-600 600-10	00 10	00-1500	tīZ >150	²⁰ S _T (GeV)
SR	N _L	Nτ	0	$< S_{\rm T} < 300$	300	$< S_{\rm T} < 600$	600	$< S_{\rm T} < 1000$	1000	$0 < S_{\rm T} < 1500$		$S_{\rm T} > 1500$
			obs	exp	obs	exp	obs	exp	obs	exp	obs	exp
SR1	3	0	116	123 ± 50	130	127 ± 54	13	18.9 ± 6.7	1	1.43 ± 0.51	0	0.208 ± 0.096
SR2	3	≥ 1	710	698 ± 287	746	837 ± 423	83	97 ± 48	3	6.9 ± 3.9	0	0.73 ± 0.49
SR3	4	0	0	0.186 ± 0.074	1	0.43 ± 0.22	0	0.19 ± 0.12	0	0.037 ± 0.039	0	0.000 ± 0.021
SR4	4	≥ 1	1	0.89 ± 0.42	0	1.31 ± 0.48	0	0.39 ± 0.19	0	0.019 ± 0.026	0	0.000 ± 0.021
SR5	3	0	—	_	_	_	165	174 ± 53	16	21.4 ± 8.4	5	2.18 ± 0.99
SR6	3	≥ 1	—	_	_		276	249 ± 80	17	19.9 ± 6.8	0	1.84 ± 0.83
SR7	4	0	—	_	_	_	5	8.2 ± 2.6	2	0.96 ± 0.37	0	0.113 ± 0.056
SR8	4	<u>≥</u> 1	—	—	—	—	2	3.8 ± 1.3	0	0.34 ± 0.16	0	0.040 ± 0.033

1 Interpretation for RPV Stop SUSY Search

1 Interpretation for RPV Stop SUSY Search

$$W_{RPV} = \frac{1}{2} \lambda_{ijk} L_i L_j \overline{E}_k + \lambda_{ijk} L_i Q_j \overline{D}_k + \frac{1}{2} \lambda_{ijk} U_i D_j \overline{D}_k + \kappa_i L_i H_2$$

Leptonic

Hadronic

② RPV in Supersymmetry in 4-lepton Final State

- Selection of 4 isolated leptons in the event is already a strong requirement for SM processes
- 4 leptons requirement needs high lepton identification and reconstruction efficiency!
- > The lepton p_T must pass 20/10/10/10 GeV threshold
- \blacktriangleright No MET, S_T and b-quark jet requirement decouple from generic SUSY (RPC) searches
- ZZ production is the dominant SM background.

$$W_{RPV} = \frac{1}{2} \left(\lambda_{ijk} L_i L_j \overline{E}_k + \lambda_{ijk} L_i Q_j \overline{D}_k + \frac{1}{2} \lambda_{ijk} U_i D_j \overline{D}_k + \kappa_i L_i H_2 \right)$$

Leptonic Mixed Hadronic

λ -term	neutralino LSP decay mode
$\lambda_{121} = -\lambda_{211}$	$e\mu\nu_e + ee\nu_\mu$
$\lambda_{122} = -\lambda_{212}$	$\mu\mu\nu_e + \mu e \nu_\mu$
$\lambda_{123} = -\lambda_{231}$	$ au\mu u_e + au e u_\mu$
$\lambda_{131} = -\lambda_{311}$	$e\tau\nu_e + ee\nu_{\tau}$
$\lambda_{132} = -\lambda_{312}$	$\mu \tau \nu_e + \mu e \nu_{\tau}$
$\lambda_{133} = -\lambda_{331}$	$ au au u_e + au e u_{ au}$
$\lambda_{231} = -\lambda_{321}$	$e au u_{\mu} + e \mu u_{ au}$
$\lambda_{232} = -\lambda_{322}$	$\mu au u_{\mu} + \mu \mu u_{ au}$
$\lambda_{233} = -\lambda_{323}$	$ au au u_{\mu} + au\mu u_{ au}$

→ Select OSSF pairs and find closest to M_z M₁
 → Another OS (OF or SF) pair M₂
 Define 2D plot (M₁ vs M₂) for different OS regions
 0 - 75 - 105 - Infinity
 → 9 analyses regions

② Backgrounds and SUSY Signal

② Backgrounds and SUSY Signal

② Results

Expected background contributions from different SM sources and experimentally observed events in all analysis regions.

		$M_1 < 75 \; GeV$	$75 < M_1 < 105 \; GeV$	$M_1 > 105 \; GeV$
	ZZ	$0.76 {\pm} 0.18$	15±4	$0.30 {\pm} 0.07$
	rare	$0.28 {\pm} 0.13$	2.7±1.0	$0.12{\pm}0.05$
$M_2 > 105 \; GeV$	fakes	$0.4{\pm}0.4$	$0.7{\pm}0.7$	$0.05 {\pm} 0.05$
	all backgrounds	$1.4{\pm}0.5$	$18{\pm}4$	$0.47{\pm}0.10$
	observed	0	20	0
	ZZ	$0.10 {\pm} 0.03$	150*	$0.05 {\pm} 0.01$
	rare	$0.12{\pm}0.05$	2.5±1.2	$0.06 {\pm} 0.03$
$75 < M_2 < 105 \; GeV$	fakes	$0.3 {\pm} 0.3$	$0.6{\pm}0.6$	$0.05 {\pm} 0.05$
	all backgrounds	$0.52{\pm}0.34$	153*	$0.16{\pm}0.06$
	observed	0	160	0
	ZZ	9.8±2.0	32±8	$0.98 {\pm} 0.20$
	rare	$0.31 {\pm} 0.14$	2.5±1.2	0.011 ± 0.005
$M_2 < 75 \; GeV$	fakes	$0.3{\pm}0.3$	$0.8{\pm}0.8$	$0.06 {\pm} 0.06$
	all backgrounds	$10.4{\pm}2.0$	35 ± 8	$1.0{\pm}0.2$
	observed	14	30	1

 \blacktriangleright Irreducible SM background \rightarrow estimated from MC

 \succ Fake leptons \rightarrow data driven estimation method

2 4-lepton efficiency for neutralino dynamics

Two extreme cases are taken into account:

- 1. Neutralino is produced in 2-body decay of a directly produced squark \rightarrow The most energetic neutralino
- 2. Neutralino produced at rest \rightarrow The most soft neutralino
- No significant difference in efficiency for both cases

Efficiency is driven by neutralino mass via signal region selection

② Interpretation of pMSSM Model

PMSSM model points (~7300), which represents properties of generic MSSM, chosen with flat parameter priors at Electro-weak scale

4-lepton isolation efficiency fits very well between 0.5 and 1.

② Upper limit on Cross Section of Simplified and Generic SUSY Models

② General interpretation

Mass exclusions for different SUSY production mechanisms

- CMS has an active program searching for R-parity violated SUSY.
- No significant excess observed over Standard Model expectations for multi-lepton final states
 - → Both analyses are used to exclude regions of SUSY parameters space, where RPV couplings are non-zero. RPV Stop search puts limits on the stop and bino masses.
- pMSSM model are used to study the impact of generic component on Rparity violated term signatures
 - \rightarrow Results are applicable to generic set of MSSM SUSY models and simplified models.

② Fake Rate Techniques

② Ratio of Average Reconstructed Level Isolation Efficiency of all Charged 4-leptons from χ Decays

