

Baryon Number Violating Top Quark Decays in pp collisions at $\sqrt{s} = 8$ TeV | CMS-PAS-B2G-12-023 [1] |

Search for

G.Bruno, M. Gabusi, D.Pagano on behalf of CMS Collaboration

A search for the decay of top quarks that violate baryon number conservation is performed using p-p collisions produced by the LHC at $\sqrt{s} = 8$ TeV. The top quark decay signature considered in this analysis consists of one light lepton (electron or muon), two jets, but no neutrino in the final state. Data collected by the CMS detector [2] and corresponding to an integrated luminosity of 19.6 fb⁻¹ are used for the analysis. No significant excess of events over the expected yields from Standard Model (SM) processes is observed. The upper limits at 95% confidence level on the branching fraction of the baryon number violating top-quark decay are found to be 0.0016 and 0.0017 for muon analysis and for the electron analyses, respectively.

Motivations

- Tiny baryon number violation (BNV) predicted even in SM [3]
- Strong BNV effects predicted in many BSM models
- BNV is a necessary condition for the observed baryon-antibaryon

- asymmetry in the universe [4]
- No BNV processes observed so far
- BNV in top quark system suggested in [5]

We look at tt pairs, where one top undergoes an hadronic decay, and the other a BNV decay in one lepton and two jets

ANALYSIS STRATEGY

Counting Experiment in signal region

Simplified selection to reduce the dependence on the model as much as possible

BASIC SELECTION

GOAL:

- Normalize MC and DATA by scaling top yield
- Reduce impact of systematic uncertainties
- Reduce non top-background

SELECTION:

Exactly 1 isolated muon (electron) with: p_T > 20 (30) GeV |η| < 2.1 (2.4)

At least 5 jets with $p_T > 30 \text{ GeV}$ (3 Jets with $p_T > 70, 55, 40$ GeV respectively)

At least 1 b-tagged jet

TIGHT SELECTION

GOAL:

- Enhance signal
- Expectation expressed as simple ratios of efficiencies as function of BR and cross section

SELECTION:

RESULTS

Dataset	Cross Section (pb)	Basic	Corrected basic	Tight	
tī	234	36500 ± 7100	38200 ± 3800	2030 ± 200	
W + jets	37500	6500 ± 3300	6500 ± 3300	240 ± 120	
Z + jets	3500	760 ± 380	760 ± 380	85 ± 45	
tW	22.2	1120 ± 190	1170 ± 180	37.3 ± 7.5	
t – channel	87.1	230 ± 120	230 ± 120	6.6 ± 3.6	
s – channel	5.55	27 ± 14	27 ± 14	0.70 ± 0.50	
WW	54.8	78 ± 39	78 ± 39	3.7 ± 2.0	
WZ	33.2	45 ± 23	45 ± 23	2.1 ± 1.1	
ZZ	17.7	11.1 ± 5.6	11.1 ± 5.6	1.40 ± 0.70	
tŦW	0.23	132 ± 66	132 ± 66	6.3 ± 3.2	
$t\bar{t}Z$	0.17	86 ± 43	86 ± 43	4.4 ± 2.2	
QCD	-	2900 ± 1400	2900 ± 1400	330 ± 160	
Total exp.	-	48300 ± 9500	50108 ± 220	2740 ± 140	
Data	-	50108 ± 220	50108 ± 220	2703 ± 52	
	•	•		•	

Electron analysis (Table): cross-sections, expected and observed yields in the basic and tight selection for BR = 0. The reported uncertainties are statistical plus systematic.

Electron analysis (Figure): distribution of E_T^{miss} (left) and χ^2 (right). Observations and SM expectations for the corrected basic (top) and tight (bottom) selection.

Dataset	Cross Section (pb)	Basic	Corrected basic	Tight
tī	234	37100 ± 7800	38600 ± 3900	2200 ± 270
W + jets	37500	6300 ± 3200	6300 ± 3200	230 ± 120
Z + jets	3500	380 ± 190	380 ± 190	32 ± 18
tW	22.2	1160 ± 250	1210 ± 240	51 ± 11
t – channel	87.1	250 ± 130	250 ± 130	5.7 ± 3.0
s – channel	5.55	32 ± 16	32 ± 16	0.85 ± 0.52
WW	54.8	87 ± 43	87 ± 43	3.1 ± 1.7
WZ	33.2	41 ± 21	41 ± 21	1.43 ± 0.78
ZZ	17.7	5.6 ± 2.8	5.6 ± 2.8	0.50 ± 0.28
tŦW	0.23	129 ± 64	129 ± 64	6.0 ± 3.0
tĪZ	0.17	79 ± 40	79 ± 40	4.2 ± 2.1
QCD	-	790 ± 550	790 ± 550	118 ± 59
Total exp.	-	46000 ± 10000	47951 ± 220	2660 ± 140
Data	-	47951 ± 220	47951 ± 220	2614 ± 51

Muon analysis (Table): cross-sections, expected and observed yields in the basic and tight selection for BR = 0. The reported uncertainties are statistical plus systematic.

Muon analysis (Figure): distribution of E_T^{miss} (left) and χ^2 (right). Observations and SM expectations for the corrected basic (top) and tight (bottom) selection.

> In both muon and electron analyses the observed yield in the tight selection agrees with the SM expectations.

LIMITS

The Upper limit on BR at 95% CL is obtained with the Feldman-Cousins approach [6].

	95% CL Upp. lim.	Exp. lim.	68% exp. lim. range
Muon ch.	0.0016	0.0029	[0.0017, 0.0042]
Electron ch.	0.0017	0.0031	[0.0018, 0.0045]

The comparison between the expected and observed numbers of events in tight selection is used to infer an upper limit on BR

The normalization is performed by scaling only the tt and tW production rates.

The sum of expected signal and background events that pass the basic selection is normalized to the number of observed events.

The expected yield in the tight selection (N_{exp}^{T}) can be expressed as a function of: (a) the total observed yield in the basic selection (N^B_{obs}) (b) the expected non-top yield in the basic selection (N^{B}_{bck}) (c) the expected non-top yield in the tight selection (N^{T}_{bck}) (d) t and t w cross sections ($\sigma_{t\bar{t}}$ and σ_{tW}) (e) the integrated luminosity (f) efficiencies ϵ^{B} (ϵ^{T}) to pass the basic (tight) selections for t and tW (functions of BR):

$$N_{exp}^{T} = \left(N_{obs}^{B} - N_{bck}^{B}\right) \left[\frac{1}{1 + \frac{\sigma_{tW}\epsilon_{tW}^{B}(BR)}{\sigma_{t\bar{t}}\epsilon_{t\bar{t}}^{B}(BR)}} \times \frac{\epsilon_{t\bar{t}}^{T}(BR)}{\epsilon_{t\bar{t}}^{B}(BR)} + \frac{1}{1 + \frac{\sigma_{t\bar{t}}\epsilon_{t\bar{t}}^{B}(BR)}{\sigma_{tW}\epsilon_{tW}^{B}(BR)}} \times \frac{\epsilon_{tW}^{T}(BR)}{\epsilon_{tW}^{B}(BR)}\right] + N_{bc}^{T}$$

Correlated uncertainties highly reduced in the efficiency ratios

Impact of integrated luminosity confined to non top-background

V+ 5 jets yield uncertainties have limited impact because of cancellations

tt and tW cross section uncertainties confined to subdominant terms

Dominant uncertainty remains in tt tight-to-basic efficiency ratio

QCD ESTIMATE

QCD is calculated using a data-driven approach:

 $N_{QCD} = R(N_{data}^{anti-iso} - N_{non-QCD}^{anti-iso})$

A control region where isolation criteria are inverted is defined: such a selection is called "anti-isolated"

Combined	0.0015	0.0029	[0.0016, 0.0042]

The combined results of the muon and electron channels are obtained by maximising the product of the two likelihood functions, assuming a common value of BR for the two channels.

References:

[1] CMS Collaboration, "Search for baryon number violating top quark decays at s = $\sqrt{8}$ TeV", CMS Physics Analysis Summary CMS-PAS-B2G-12-023, (2013)

[2] CMS Collaboration, "The CMS experiment at the CERN LHC", JINST 03 (2008) S08004, doi:10.1088/1748-0221/3/08/S08004.

[3] G. 't Hooft, "Symmetry Breaking through Bell-Jackiw Anomalies", Phys. Rev. Lett. 37 (1976) 8–11, doi:10.1103/ PhysRevLett. 37.8.

[4] A. D. Sakharov, "Violation of CP in variance, C asymmetry, and baryon asymmetry of the universe", Soviet Physics Uspekhi 34 (1991) 392.

[5] Z. Dong et al., "Baryon number violation at the LHC: The top option", Phys.Rev. D85 (2012) 016006, doi:10.1103/ PhysRevD.85.016006, arXiv:1107.3805.

[6] G. J. Feldman and R. D. Cousins, "A Unified approach to the classical statistical analysis of small signals", Phys. Rev. D57 (1998) 3873-3889, doi:10.1103/PhysRevD.57.3873, arXiv:physics/9711021.