

UH

DER FORSCHUNG | DER LEHRE | DER BILDUNG

Overview

The top-quark and new physics

- high mass of the top quark is still intriguing
- special rôle of the top in new physics models
- Tevatron forward-backward asymmetry still unresolved issue

Top quark resonances in BSM Models

- extended gauge sectors: Z',W' and G' bosons
- top-colour condensates
- warped extra dimensions: Kaluza-Klein excitations
- compositeness

\Rightarrow rich final states, numerous channels

Jvents/20 GeV

Analysis Methods

strategies for different mass regimes

- Iow mass resonances (< I TeV)</p>
 - resolved final state objects
 - many jets, isolated leptons
 - solve combinatorics for resonance mass reconstruction, using known masses as constraints
- high mass resonances (> I TeV)
 - merged final state objects
 - less jets, non-isolated leptons
 - special requirements: top tagging,
 b-tagging in dense environments
 - unambigious selection of top quark helps in the reconstruction of the resonance mass

Top Tagging in CMS

Top- and W-tagging in allhadronic final states

- substructure information to identify jets from fully-merged top quark decays
- CMS top tagger: use invariant mass of subjets
 - robust algorithm (pile-up, calibration,...)
 - good efficiency (~40% at high P_T) with small mistag rate (3-7%, depending on P_T)
- efficiency and mistag rate measurements in lepton+jets samples

Analyses Overview

Analyses of the full 2012 dataset at $\sqrt{s} = 8$ TeV

- narrow t+b resonances in lepton+jets (W' search) [CMS PAS B2G-12-010]
- resonances decaying to t+jet in lepton+jets (t* search) [CMS PAS B2G-12-014]
- resonances in the tĒ invariant mass spectrum in lepton+jets (resolved and boosted Z' searches) [CMS PAS B2G-12-006]
- resonances in the tī invariant mass spectrum in all-hadronic channel (boosted Z' search) [CMS PAS B2G-12-005]

t+b Resonances

search for production of $W' \rightarrow t+b$

- consider left- and right-handed W's
 - W'_L: interference with SM W production
 - W'_R: leptonic decay involves V_R with unknown mass: different branching ratios depending on M_{VR}
- semi-leptonic top analysis: one isolated lepton (e, μ) and 2 jets with P_T > 120 and 40 GeV, one b-tagged
- top-quark hypothesis: best W reconstruction (P_T^{miss} + lepton) and jets
- M(tb): combine top with remaining highest P_T jet
- limits: M(W'_R) > 2.03 TeV (2.09 TeV expected) at 95% C.L.

 $t^* \rightarrow t + g$

pair production of excited top quarks

- rich final state: $t\bar{t} + \ge 2$ jets
 - analysis performed in lepton+jets channel
 - select isolated lepton $+ \ge 6$ jets
 - at least on b-tagged jet
- mass reconstruction: using the constraint
 M = m(lube) = m(cebe)
 - $M_{t+g} = m(I \vee bg) = m(qqbg)$
- background: obtained from a fit to the obtained mass spectrum, signal distribution taken from simulation
- no excess observed: excluded spin-3/2 t* resonances below 790 GeV at 95% C.L.

tt Resonances (Low Mass)

Threshold lepton+jet analysis

- selection: isolated lepton and four or more jets with R=0.5, one or more b-tagged jets
 - reconstruct neutrino from missing transverse momentum
 - tī-system: take solution which minimizes $\chi^2 = \chi^2_{lep} + \chi^2_{had} + \chi^2_{W,had} + \chi^2_{pt}$
- ▶ four categories: e/μ channels, $N_{btag} = 1$ or ≥ 2
- fit m_{tt} spectrum to data, parametrisation validated with simulated tt events
- templates for various signal hypothesis, superposition of Gaussian kernels
- fits performed simultaneously for all four categories
- absence of signal validated with pseudoexperiments

tt Resonances (High Mass)

Boosted lepton+jet analysis

- non-isolated lepton
 - special selection using ΔR (lepton,jet) and p_T^{rel} to retain sensitivity in boosted region
- > 2 or more jets with $P_T > 150$ and 50 GeV
- missing transverse momentum from neutrino, P_T^{miss} > 50 GeV
- reconstruct tt-system by assigning jets to the leptonic or hadronic top candidate
 - choose hypothesis with minimum $\chi^2 = \chi^2_{\text{lep}} + \chi^2_{\text{had}}$
 - χ^2 definition designed for boosted events
 - select events with $\chi^2 < 10$
- split events according to number of b-tagged jets

N_{iets}

tt Resonances: Limits

Combined low and high mass

- extended coverage 0.5 3 TeV in m_{tt} through combining two analyses
- threshold analysis higher sensitivity at < I TeV, boosted analysis takes over at ~I TeV
- narrow (wide) Z' models excluded at 95% CL for masses below 2.1 (2.7) TeV
- mass limit for KK gluons: 2.5 TeV
- upper limit of 0.03 pb on cross section × BR for masses > 2 TeV for narrow resonances

tt Resonances: All-hadronic

All-hadronic analysis

- 2-jet selection, CA jets with R=0.8
- reconstruction of tt-system in fully merged final-states
- sensitivity of I+I events one order of magnitude better than I+2 events
- main background: QCD
 - determined from data
 - cross check mistag rate with I+2-type events
- comparable limits to the lepton+jets analysis
- exclusion limits on narrow and wide Z' and KK gluons of up to 2.3 TeV

Summary

Searches for resonances decaying to top quarks

- exciting possibility to explore many new physics models
- very rich final states

Excellent performance of CMS

- analyses being released using the full 8 TeV data
- no signals so far, but new limits in so far unexplored regions

Boosted topologies

- higher mass regions accessible
- increasing importance

Additional Material

t+b Resonances

Verification of the W+jets background

- use 0 b-tag sample, little signal contamination
- reconstructed M(t+jet) shape well described by simulation, small differences taken as systematic uncertainty

Top P_T spectrum

- original distribution not well described by simulation
- weights derived using a signaldepleted control region (N_{jets} ≥ 4, N_{b-jets} ≥ 2,400 < M(tb) < 750 GeV)
- good agreement after reweighting

t+b Resonances

t+b Resonances

Contour plots of M(W') in the (a^L, a^R) plane

contours where the 95% C.L. limit equals the predicted cross section

$$\mathcal{L} = \frac{V_{f_i f_j}}{2\sqrt{2}} g_w \overline{f}_i \gamma_\mu \left(a_{f_i f_j}^R (1 + \gamma^5) + a_{f_i f_j}^L (1 - \gamma^5) \right) W'^\mu f_j + \text{H.c.}$$

t* Uncertainties

Uncertainties on the background shape: uncertainties of the fit parameters a, b, c

$$f(x) = \frac{u}{1 + e^{\frac{x-b}{c}}},$$

Uncertainties on the expected signal:

Source	Muon Channel	Electron Channel				
Luminosity	4.4%	4.4%				
JES	2.3-3.9%	2.2-4.1%				
JER	0.1–0.6%	0.1–0.8%				
Trigger Efficiency	1.0%	1.0%				
Lepton Efficiency	0.9–1.3%	0.04%				
b-tag SF	0.6–1.5%	0.8–1.4%				
Pileup	0.02–0.7%	0.02–0.4%				
PDF	0.3–1.9%	1.3-1.9%				
MC Statistics	1.9%	2.0%				

tt Resonances (Low Mass)

tt-resonances: zoom-in of the obtained limits in the low-mass regime by the threshold analysis

tt Resonances (High Mass)

Measurement of the reconstructed mass of the t \bar{t} -system in four categories: e, μ , N_{b-tag} = 0, N_{b-tag} \geq I

tt Resonances (High Mass)

Reconstructed mass of the leptonic (left) and hadronic (right) top quark decay, after the full selection

tt Resonances: all-hadronic

Top-tagging efficiency measurement:

- semi-leptonic control sample with one b-tagged jet
- determine efficiency and subjet scale factor for data and simulation
- good agreement found, ratio between data and simulation is
 0.926 ± 0.039, applied as scale factor to tt and signal MCs

tt Resonances: all-hadronic

Top-tagging mistag-rate measurement:

- dijet events with same topology as in the analysis selection
- Invert minimum-pairwise mass requirement on one jet, resulting in a signal-depleted control region
- mistag rate measured on the other jet after application of top-tag requirement and subtraction of small contribution from tt events

tt Resonances: all-hadronic

Systematic uncertainties:

	Process	tī	NTMJ	RS KK gluon				
	Mass (TeV/ c^2)			1	1.5	2	2.5	3
Systematic Source	Variation	Effect of Systematic						
Trigger Efficiency	2	2		2	2	2	2	2
Jet Energy Scale	$\sim\pm5$	$+11 \\ -15$		$+15 \\ -22$	$^{+1.3}_{-3.5}$	$-4.5 \\ -0.1$	$-4.9 \\ -0.1$	$-3.0 \\ -1.1$
Jet Energy Resolution	$f(\eta)$			$ -1.0 \\ -0.3 $	-0.4 + 0.2	-0.2 + 0.3	$\begin{array}{c}-0.4\\+0.4\end{array}$	-0.4 + 0.3
Luminosity	± 4.4	4.4		4.4	4.4	4.4	4.4	4.4
Top Tagging Scale Factor	85.7 ± 7.8	8.4		8.4	8.4	8.4	8.4	8.4
NTMJ Determination	See Text		4.9					
NTMJ Closure Test	See Text		$+10.8 \\ -8.7$					
tt Cross Section	± 50	50						

Enhancement analysis:

Process	Events					
SM tī	507 ± 269					
Non-Top Multijet	6602 ± 723					
Total Background	7109 ± 771					
Observed Data	6887					
tt Efficiency	$(3.4 \pm 1.7) \cdot 10^{-4}$					

with
$$S = \frac{\int_{M_{t\bar{t}}>1 \text{TeV}/c^2} \frac{d\sigma_{SM+NP}}{dM_{t\bar{t}}} dM_{t\bar{t}}}}{\int_{M_{t\bar{t}}>1 \text{TeV}/c^2} \frac{d\sigma_{SM}}{dM_{t\bar{t}}} dM_{t\bar{t}}}}.$$

derive constraints on a general enhancement in the invariant $m_{t\bar{t}}$ spectrum: S < 1.79 at 95% C.L.

