

NNLO W Pair Production at the LHC: Status Report

Grigorios Chachamis, IFIC (UV/CSIC)

In collaboration with M. Czakon, P. Fiedler and A. Mitov

EPS-HEP-2013, Stockholm, 18-24 July, 2013

Outline

- Introduction and a bit of history
- Motivation for computing the NNLO corrections
- Classification of the radiative corrections
- Some computational details regarding the double-virtual corrections (2-loop)
- Outlook

The process at LO

W Pair Production in the quark-anti-quark annihilation channel $2 \rightarrow 2$ process with **massive** particles

LO Calculation Brown, Mikaelian ('79)
CERN Discovery of W and Z bosons ('83)

... and at NLO

NLO Calculation

Ohnemus ('91); Frixione ('93)
Ohnemus('94)
Dixon, Kunszt, Signer ('98,'99)
Campbell, K. Ellis ('99)

W pair production important as a **signal** in searches for **New Physics**. Testing ground for non-abelian structure of SM, triple gauge couplings, γ WW, ZWW

$$\sigma(p\bar{p} \to W^+W^-) =$$

TEVATRON

$$14.6^{+5.8}_{-5.1}(\text{stat})^{+1.8}_{-3.0}(\text{syst}) \pm 0.9(\text{lum}) \text{ pb}$$

CDF

$$13.8^{+4.3}_{-3.8}(\text{stat}) \, {}^{+1.2}_{-0.9}(\text{syst}) \pm 0.9(\text{lum}) \text{ pb}$$

DØ

$\sqrt{s} = 2 \text{ TeV}$	W^+W^-		
$(p\bar{p})$	MRS98	CTEQ5	
Born [pb]	10.0	10.3	
Full [pb]	13.0	13.5	

Theory

Campbell, Ellis ('99)

W pair production important as a **signal** in searches for **New Physics**. Testing ground for non-abelian structure of SM, triple gauge couplings, γ WW, ZWW

		fb ⁻¹	$\sigma(pp \rightarrow WW + X)$ [pb]	SM NLO	
ATLAS	7TeV	4.6	$51.9 \pm 2.0(stat) \pm 3.9(syst) \pm 2.0(lumi)$	44.7 ^{+2.1} _{-1.9}	
CMS	7TeV	4.9	$52.4 \pm 2.0(stat) \pm 4.5(syst) \pm 1.2(lumi)$	_	
CMS	8TeV	3.5	$69.9 \pm 2.8(stat) \pm 5.6(syst) \pm 3.1(lumi)$	57.3 ^{+2.4} _{-1.6}	
CMS 7 TeV WW: CMS PAS SMP-12-005 ATLAS 7 TeV WW: arXiv: 1211.6096		MCFM NLO+	-CT10		
Vincenzo Lombardo LAPP/CNRS				14	

W pair production important as a **signal** in searches for **New Physics.** Testing ground for non-abelian structure of SM, triple gauge couplings, γWW, ZWW

Higgs discovery channels:

- Pick up the signal process
- Avoid or suppress the usually large <u>background</u>
- Accurate theoretical predictions for both signal and background
 - Main background (irreducible): W pair production

Size of higher order corrections

qq→WW

70% enhancement at NLO. With a jet veto the enhancements fall to 20-30%

Dixon, Kunszt, Signer ('98, '99)

loop induced gg→WW_

Contributes to the quark annihilation channel at $\mathcal{O}(\alpha_s^2)$. Enhanced by the large gluon flux. After Higgs search cuts it increases the background by 30%, with no cuts by 5%

Glover, van der Bij ('89); Kao, Dicus ('91)

Binoth, Ciccolini, Kauer, Krämer ('05)

Duhrssen, Jackobs, v. d. Bij, Marquard ('05)

EW corrections

Accomando, Denner, Kaiser ('05)

See also recent: Gehrmann, Tancredi Weihs ('13); Dawson, Lewis, Zeng ('13)

Baglio, Ninh and Marcus M. Weber ('13)

Type of corrections at NNLO

(one loop) x (one loop)*

Type of corrections at NNLO

(one loop) x (one loop)*

Focus on double-virtual corrections:

The difficult part here is to compute the 2-loop Feynman Integrals.

We do that in a semi-analytic/semi-numeric way: We use a combination of:

- Mellin-Barnes representations technique for computing the integrals in the high energy limit
- A deep mass expansion
- •A numerical differential equations solution Caffo, Czyz, Laporta, Remiddi ('98)

Mellin-Barnes recipe

Do a reduction a la Laporta into Masters, then starting from the Feynman parameters representation of a master, "walk" the following steps:

- produce representations (MBrepresentation.m)
- analytically continue in ε to the vicinity of 0 and expand in mass (MB.m, MBasymptotics.m)
- perform as many as possible integrations using Barnes lemmas (BarnesRoutines.m)
- resum the remaining integrals by transforming into harmonic series (Xsummer)
- resum remaining constants by high-precision numerical evaluation (quadprec.m) and fit them to a transcendental basis (PSLQ)

Software needed

MBrepresentation.m

(G.C., Czakon)

Produces representations for **multi-loop**, **planar** or **non-planar**, **scalar** or **tensor** integrals of any **rank**!

MB.m

(Czakon)

Determination of contours, analytic continuation, expansion in a chosen parameter, numerical integration

barnesroutines.m

(Kosower)

Barnes' lemmas

XSummer

(Moch, Uwer)

Evaluation of harmonic sums

PSLQ

(Bailey)

Fitting to a transcendental basis

<u>quadprec.m</u>

(Czakon)

High precision numerical evaluation with up to 64 digits

The deep mass expansion

Assume that any master integral can be written as:

$$\mathbf{M}_i = \sum_{m,n,l} \operatorname{Coeff}_{(i;n,l,m)}(x) \epsilon^m m_s^n \log^l(m_s)$$
 $m_s = M_W^2 / s$

$$m_s = M_W^2/s$$

One can also express the derivative of a master (with respect to the mass) in terms of master integrals:

$$m_s \frac{d}{dm_s} M_i(m_s, x, \epsilon) = \sum_j C_{ij}(m_s, x, \epsilon) M_j(m_s, x, \epsilon)$$

Determine this way the Coeff's

Numerical differential equations solution

- Compute the high energy asymptotics of the master integrals obtaining the leading behaviour of the amplitude
- Determine the coefficients of the mass expansions using differential equations in $\boldsymbol{m}_{_{S}}$ obtaining the power corrections

$$m_s \frac{d}{d m_s} M_i(m_s, x, \epsilon) = \sum_j C_{ij}(m_s, x, \epsilon) M_j(m_s, x, \epsilon)$$

• Evaluate the expansions for $m_s \ll 1$ to obtain the desired numerical precision of the boundaries

 Evolve the functions from the boundary point with differential equations first in m_s and then in x (**ZVODE**)

Brown, Byrne, Hindmarsh ('89)

Differential equations: specifics

- Find the optimal set of masters
- Solve the differential equations for a grid of points
- Run numerical checks (e.g. use different contours) and control errors.
- Interpolate
- Renormalise

Phase space and evolution

Have already run for all 1600 points and for 3 different contours

Conclusions and Outlook

- We have computed the 2-loop virtual corrections
- We are making fast progress in computing the double-real corrections
- We hope that in a matter of few months we will be able to present the total cross-section for the quark-anti-quark-annihilation channel for LHC energies