

Sara Strandberg, Stockholm University for the ATLAS, CDF, CMS and D0 collaborations

The top quark is special:

- Most massive elementary particle known to date. Special role in many theories beyond the Standard Model.
- Short-lived, so decays before hadronizing. Possible to study the properties of a bare quark.

• Top pair production (through strong interaction):

• Single top production (through electroweak interaction):

Top Pair Decay Channels

- The top quark decays almost exclusively to a W boson and a b quark.
- The W boson in turn decays hadronically (BR \approx 70%) or leptonically (BR \approx 30%).
- Alljets: Largest BR but also large backgrounds.
- Lepton+jets: Large BR and manageable backgrounds.
- Dilepton: Small BR and small backgrounds.

Top Pair Production Cross Section

- Cross sections consistent both with theory and across channels^(*).
- Systematics limited.
- Generator modeling uncertainties dominating.
- Power to constrain theory. (*) $\sigma_{t\bar{t}}$ now availed

8 TeV results:

ATLAS ℓ +j: 232 ± 2(stat) ± 31(syst) ± 9(lumi) pb

CMS $\ell\ell$: 227 ± 3(stat) ± 10(syst) ± 10(lumi) pb

CMS
$$\ell$$
+j: 228 ± 9(stat) $^{+29}_{-26}$ (syst) ± 10(lumi) pb

Total uncertainty (CMS $\ell\ell$): 6.3%

(*) $\sigma_{t\bar{t}}$ now available at full NNLO (Czakon, Fiedler, Mitov arXiv:1303.6254)

SOCKHO

Strong Coupling Constant and Top Quark Pole Mass

- Cross section dependence on α_s and m_t^{pole} is used to constrain the strong coupling constant and/or the top quark pole mass.
- Pole mass determination complementary to direct top mass

DO: $m_t^{\text{pole}} = 167.5^{+5.4}_{-4.9} \text{ GeV}$ (approximate NNLO, Phys. Rev. D 80 (2009) 054009) ATLAS: $m_t^{\text{pole}} = 166.4^{+7.8}_{-7.3} \text{ GeV}$ (approximate NNLO, Phys. Rev. D 80 (2009) 054009) Phys. Lett. B 703, 422 (2011), ATLAS-CONF-2011-054

• Enough data to ³ CMS Preliminary, 12.1 fb⁻¹ at √s = 8 TeV $1/\sigma_{t\bar{t}} d\sigma_{t\bar{t}} / dy_{t\bar{t}}$ ATLAS $\frac{1}{\sigma} \frac{d\sigma}{dp_T^t} [GeV^{-1}]$ data make a large NLO (MCFM) Data 1 L dt = 2.05 fb⁻¹ + Jets Combined MadGraph ---- ALPGEN MC@NLO MC@NLO set of differential ---- POWHEG ----- Approx. NNLO (arXiv:1205.3453) cross-section measurements. 10⁻¹ Vs. kinematics of ^{-heory/Data} 1.2 - $t\bar{t}$ system 100 150 200 250 300 50 350 400 -2 -1 0 2 p₊t [GeV] - top quark CMS Preliminary, 12.1 fb⁻¹ at √s = 8 TeV 30 ^{×10⁻³} CMS Preliminary, 12.2 fb1 at vs = 8 TeV $\frac{1}{\sigma} \frac{d\sigma}{dp_T^{\dagger}} [GeV^{-1}]$ - decay products $\frac{1}{\sigma} \frac{d\sigma}{d\eta^{\text{NLead.b.Jet}}}$ 0.6[****]**** e/µ + Jets Combined Data **Dilepton Combined** Data MadGraph - MadGraph 25 MC@NLO ---- MC@NLO Good agreement ---- POWHEG --- POWHEG 20 0.4 with generators 15 0.3 tested. 10 0.2 Most bins are 0. systematics _____ 80 100 120 140 160 180 200 60 -1.5 -1 -0.5 0 -2 0.5 1 1.5 2 p^l₊ [GeV] $\eta^{\text{NLead.b-Jet}}$ limited.

Eur. Phys. J. C (2013) 73:2261, CMS-PAS-TOP-12-027, CMS-PAS-TOP-12-028

Top Pair Production in Association with Jets

Eur.Phys.J. C (2013) 72:2043

P. 8

- Study additional jets to test QCD and MC generators.
- Extensive list of quantities probed.
- \rightarrow ISR/FSR variations reduced.

SARA STRANDBERG, STOCKHOLM UNIVERSITY

ATL-PHYS-PUB-2013-005

- Direct probe of Wtb coupling and of V_{tb} in CKM matrix.
- Challenging, mainly due to the background from W+jets.
- Need MVA techniques.
- s+t-channel production observed at CDF and D0 in 2009.
- *t*-channel observed both at Tevatron and LHC.
- Evidence for *s*-channel production at D0.
- Observation of *Wt*-channel production at CMS.

(Evidence by both ATLAS and CMS 2012/2013.)[™]

P. 11 EPSHEP 2013, STOCKHOLM, JULY 22, 2013

• Ratio $R_t = \sigma_t / \sigma_{\bar{t}}$ is sensitive to u/d content of proton.

• Both measurements agree with SM prediction.

• First evidence of s-channel production by D0.

• $\sigma(p\bar{p} \to tb + X) = 1.10^{+0.33}_{-0.31} \text{ pb}$

arXiv:1307.0731 (hep-ex), submitted to Phys. Lett. B

• Evidence by ATLAS.

- First observation of Wt production by CMS.
- 700 Data CMS Preliminary, $\sqrt{s} = 8 \text{ TeV}$ tW $600 \vdash 12.2 \text{ fb}^{-1} e\mu/\mu\mu/ee \text{ channels}$ tī Events / 0.03 100 Z/γ*+jets 1j1t ► Data ☑ JES uncertainty **ATLAS** Other 500 /// Syst $L dt = 2.05 \text{ fb}^{-1}$ 80 Events 300 NW/77/W7 $\sqrt{s} = 7 \text{ TeV}$ (ee/µµ)+jets Z(ττ)+jets Dilepton 1 jet 60 Fàké dileptons 200 40 100 20 0 -0.8 -0.6 -0.4 0.2 0.4 -0.2 0 **BDT** output -0.4 -0.2 0.2 -0.3 -0.1 0.1 0.3 0 **BDT** Discriminant $\sigma = 23.4^{+5.5}_{-5.4} \text{ pb}$ $\sigma = 16.8 \pm 2.9 (\text{stat}) \pm 4.9 (\text{syst}) \text{ pb}$ 3.3σ significance 6.0σ significance Phys. Lett. B 716, 142 (2012) CMS-PAS-TOP-12-040

Top Quark Mass

- Tevatron still provides the best mass measurement, with an uncertainty of 0.5%.
- Best single LHC measurement (from CMS) reaches 0.6%.
- Updated LHC mass combination in progress.
- \rightarrow Harmonise systematic treatment e.g. generator modeling.

2.5

R^{reco}

• 3D fit to m_{top}^{reco} , m_W^{reco} and R_{lb}^{reco} .

$$\begin{split} R_{\mathsf{lb}}^{\mathsf{reco},1b} &= \frac{p_{\mathsf{T}}^{b_{\mathsf{tag}}}}{(p_{\mathsf{T}}^{W_{\mathsf{jet1}}} + p_{\mathsf{T}}^{W_{\mathsf{jet2}}})/2} \\ R_{\mathsf{lb}}^{\mathsf{reco},2b} &= \frac{p_{\mathsf{T}}^{b_{\mathsf{had}}} + p_{\mathsf{T}}^{b_{\mathsf{lep}}}}{p_{\mathsf{T}}^{W_{\mathsf{jet1}}} + p_{\mathsf{T}}^{W_{\mathsf{jet2}}}} \end{split}$$

- In-situ calibration of JES and bJES.
- Systematic uncertainties reduced by 40% w.r.t. previous measurement.

 $m_{top} = 172.31 \pm 0.23(stat) \pm 0.27(JSF) \pm 0.67(bJSF) \pm 1.35(syst) \text{ GeV}$

- Lifetime-based technique, using $L_{xy} = \gamma_b \beta_B \tau_B \approx 0.4 \cdot \frac{m_t}{m_B} \beta_B \tau_B$.
- First used at CDF. Phys. Rev. D75, 071102 (2007)
- Linear mass dependence, $\Delta L_{xy}/{\rm GeV}=25-30\mu{\rm m}$
- Complementary systematics to traditional measurements, e.g. minimal dependence on jet energy scale.
- In each event, select secondary vertex with largest L_{xy} .
- Median, $\widehat{L_{xy}}$, is used to extract m_{top} .

 $m_{\rm top} = 173.5 \pm 1.5 ({\rm stat}) \pm 1.3 ({\rm syst}) \pm 2.6 (p_T(t)) \,\,{\rm GeV}$

• Differential mass measurements, to probe e.g. color reconnections and initial/final state radiation.

CMS-PAS-TOP-12-029

Top-antitop mass difference, to test CPT theorem:

 $\Delta m_t = -272 \pm 196(\text{stat}) \pm 122 \text{ (syst) MeV}$

CMS-PAS-TOP-12-031

- New physics in top sector can alter angular distributions.
- Study forward-backward and charge asymmetries.

- Tevatron $A_{FB}^{t\bar{t}}$ measurements in tension with SM at $\sim 2.5\sigma$.
- LHC $A_C^{t\bar{t}}$ measurements consistent with SM.

- $A_{FB}^{t\bar{t}}$ measurement requires full reconstruction of $t\bar{t}$ system.
- Alternative method based on y of lepton from leptonic W decay.

 $A_{FB}^{\ell} = \frac{N(q_{\ell}y_{\ell} > 0) - N(q_{\ell}y_{\ell} < 0)}{N(q_{\ell}y_{\ell} > 0) + N(q_{\ell}y_{\ell} < 0)}$

- $A_{FB}^{\ell} \approx 0.5 \cdot A_{FB}^{t\bar{t}}$ if no t polarization.
- Can also use events with jets out of acceptance (3-jet bin).

$$\begin{split} \text{CDF:} \ A_{FB}^\ell &= 0.094^{+0.032}_{-0.029} \\ \text{D0:} \ A_{FB}^\ell &= 0.047 \pm 0.023 (\text{stat})^{+0.011}_{-0.014} (\text{syst}) \end{split}$$

- CDF result approximately 2σ above SM prediction.
- D0 measurement consistent with SM (and CDF) within errors.

Forward-Backward Lepton Asymmetry, %

- Spins of top and anti-top are correlated in SM.
- Short top quark lifetime ($\sim 5\times 10^{-25}$ s) means spin information is carried on to decay products.

• Measure fraction of SM-like events, f^{SM} , using template fit to $\Delta \phi(\ell \ell)$ distribution.

-
$$f^{SM} = 0 \rightarrow$$
 no correlations.

-
$$f^{SM} = 1 \rightarrow \text{correlations}$$
 (SM).

ATLAS:
$$f^{SM} = 1.30 \pm 0.14^{+0.27}_{-0.22} \rightarrow 5.1\sigma$$

Phys. Rev. Lett. 108, 212001 (2012)
CMS: $f^{SM} = 0.74 \pm 0.08 (\text{stat}) \pm 0.24 (\text{syst})$
CMS-TOP-12-004

D0:
$$f^{SM} = 0.85 \pm 0.29 \rightarrow 3.1\sigma$$

Phys. Rev. Lett. 108, 032004 (2012)

- Top quarks in $t\bar{t}$ events have negligible polarization in SM.
- Can occur in BSM scenarios (e.g. models with large FB asymmetry).
- Polar angle of decay product *i* distributed as: $W(\cos \theta_i) = \frac{1}{2}(1 + \alpha_i P \cos \theta_i)$ P = degree of polarization, $\alpha_i =$ spin-analyzing power.
- At tree level, charged leptons and down-type quarks from W-boson decays have $\alpha_i = 1$.
- Fit $\cos \theta_{\ell}$ distributions for e and μ to extract $\alpha_{\ell} P$.

- Extract helicity fractions from:
- θ^* in $t\bar{t}$ events (unpolarized).
- e.g. θ^N in single top events (polarized).
- Not yet in LHC combination:
- latest single lepton and dilepton measurements
- (CMS-TOP-11-020, CMS-PAS-TOP-12-015).
- first measurement in single top t-channel (CMS-PAS-TOP-12-020).

ATLAS-CONF-2013-033, CMS-PAS-TOP-12-025

0.3

Effective lagrangian for Wtb vertex: V_R, g_L, g_R anomalous couplings $\mathcal{L}_{Wtb} = -\frac{g}{\sqrt{2}}\bar{b}\gamma^{\mu}(V_LP_L + V_RP_R)tW_{\mu}^- - \frac{g}{\sqrt{2}}\bar{b}\frac{i\sigma^{\mu\nu}q_{\nu}}{M_W}(g_LP_L + g_RP_R)tW_{\mu}^- + \text{h.c.}$

- Interpret F_R, F_L, F_0 in terms of anomalous couplings.
- Assume $V_L = 1$, $V_R = 0$. Derive limits on g_L and g_R .

• A_{FB}^{N} in single top *t*-channel (top ~ 90% polarized). $A_{\text{FB}}^{\text{N}} = \frac{N(\cos\theta^{N}>0) - N(\cos\theta^{N}<0)}{N(\cos\theta^{N}>0) + N(\cos\theta^{N}<0)}$

Flavour Changing Neutral Currents

- Baryon number violation possible in several BSM scenarios.
- Search for $t\bar{t}$ events in which one top decays through $t \to \bar{b}\bar{c}\mu^+$ or $t \to \bar{b}\bar{u}e^+$.

• No significant excess over expected background.

$$BR(t \to \bar{b}\bar{c}\mu^+) < 0.0016 @ 95\%$$
 C.L.

$$BR(t \to \bar{b}\bar{u}e^+) < 0.0017 @ 95\%$$
 C.L.

CMS-PAS-B2G-12-023

Further New Physics Searches

- Very rich top physics program at LHC and Tevatron experiments.
- Most analyses are systematics limited.
- Top production
 - Pair production cross section with O(4-6%) uncertainty.
 - Single top t-channel cross section with $\mathcal{O}(20\%)$ uncertainty.
 - s- and Wt-channel production observed at 3.7σ and 6σ level.
 - Associated production ($t\bar{t}V, t\bar{t}\gamma, t\bar{t}j$), differential cross section.
- Top properties
 - Top mass uncertainty is currently 0.5% (0.87 GeV).
 - Polarization, asymmetry and coupling measurements all consistent with SM (some tension in FB asymmetry).
 - Spin correlations observed.
 - Limits on FCNC and baryon number violation decays.
- Searches
 - Wide range of searches for new phenomena.

- Differential cross sections for top-pair and single-top production, KIDONAKIS, Nikolaos
- Search for Single-Top Production in ep Collisions at HERA, ANTONELLI, Stefano
- Top quark mass measurements at and above threshold in e+e- collisions at Linear Colliders, ROLOFF, Philipp
- A precise determination of top quark electroweak couplings at the ILC operating at 500 GeV, POESCHL, Roman
- Measurement of the single top quark production cross section in pp collisions with the ATLAS detector, KRASZNAHORKAY, Attila
- Measurement of differential cross sections in top pair production in pp collisions with the ATLAS detector, GARBERSON, Ford
- Measurement of intrinsic top quark properties (top mass, charge, top and W polarisation, and search for FCNC in top decays) with the ATLAS detector, MASETTI, Lucia
- Top quark pair properties (spin correlations, charge asymmetry and complex final states) with the ATLAS detector, MIJOVIC, Liza
- t tbar b bbar production at NLO accuracy matched with parton shower, TROCSANYI, Zoltan Laszlo
- Measurement of the charge asymmetry in top quark pair production at the Tevatron, DEMINA, Regina
- Inclusive and differential top quark production at the Tevatron, SORIN, Maria Veronica
- Single top quark production cross section at the Tevatron, GARCIA-BELLIDO ALVAREZ DE MIRANDA, Aran
- Measurement of the top quark mass at the Tevatron, PETERS, Reinhild
- Top quark properties studies at the Tevatron, LEONE, Sandra
- Measurement of the inclusive top quark pair cross section in pp collisions at 7 and 8 TeV with the CMS detector, MAES, Michael
- Measurement of differential cross sections in top pair production in pp collisions with the CMS detector, SYMONDS, Philip Hugh
- Measurements of the production properties of top quark pairs in pp collisions (includes charge asymmetry and spin correlations) with the CMS detector, DORLAND, Tyler Mc Millan
- Measurement of the properties of top quarks in decays (top quark and W polarization, top quark charge and couplings) with the CMS detector, SENGHI SOARES, Mara
- CMS Measurements of the Top Quark Mass, STADIE, Hartmut
- New approaches in determining the mass of the top quark: alternative techniques and differential measurements, BLYWEERT, Stijn
- Measurement of t-channel single top quark production in pp collisions with the CMS detector, IORIO, Alberto Orso Maria
- Measurement of single top production in the tW-channel in pp collisions and search for FCNC with the CMS detector, BENELLI, Gabriele
- Top Decays with Flavor Changing Neutral Higgs Interactions at the LHC, KAO, Chung
- Probing for the t \rightarrow ch decay at the LHC, HOU, George Wei-Shu
- Four-loop on-shell integrals: MSbar on-shell relation and g-2, MARQUARD, Peter
- NNLO top quark pair production, FIEDLER, Paul
- NLO merging in tt+jets, SCHOENHERR, Marek
- Top-quark Pair Production in a Running Mass Scheme, DOWLING, Matthew
- Measurement of the inclusive top quark pair cross section in pp collisions at 7 and 8 TeV with the ATLAS detector, HENRICHS, Anna
- Top quark mass measurements in ATLAS, COMPOSTELLA, Gabriele
- TOPLHCWG: combinations of top measurements at the LHC, CRISTINZIANI, Markus

- Search for ttbar resonances below 1 TeV in the semileptonic final state, BROCHET, Sebastien
- Search for Top Quark Flavour-changing Neutral-current Decays at 8 TeV, CHAO, Yuan
- Single top cross section measurements in the t-channel at CMS, IORIO, Alberto
- Measurement of differential top-quark-pair production cross sections in the lepton+jets channel with CMS, LANGE, Joern
- First measurement of single top production in the tW-channel in pp collisions, BENELLI, Gabriele
- Measurement of differential top-quark pair production cross sections in the dilepton final state at 8 TeV, DORLAND, Tyler
- A search of new charged heavy gauge W' bosons with the ATLAS detector at the LHC., GEOFFREY, Gilles
- Measurement of jets in ttbar events with ATLAS., GRAHN, Karl-Johan
- Probing QCD with top-quark pairs at CMS, LIPKA, Katarina
- Measurement of ttbar production with additional jet activity, MARTIN, Maria

New Top Mass Measurement in Dilepton Channel by ATLAS

- Select events with exactly 2 charged leptons (e,μ), E_{T}^{miss} and exactly 2 b-tagged jets.
- Background < 3%.
- Template method with $m_{\ell b}$ as estimator for m_{top} .

Dominant uncertainties: JES and bJES

New Top Mass Measurement in Alljets Channel by CMS

- Select events with exactly 6 jets (at least two *b*-tagged).
- Kinematic fit: 2×2 untagged jets ($m_{jj} = 80.4$ GeV). Combine with two *b*-jets ($m_{jjb} = m_{jj\bar{b}}$).

- Branching ratio $t \to Wb$ is ≈ 1 in SM.
- Measure $R = BR(t \rightarrow Wb)/BR(t \rightarrow Wq)$ by fitting number of *b*-jets in $t\bar{t}$ events.

- Extract $|V_{tb}|$ by assuming a unitary, three-generation CKM matrix.
- Complementary to single top measurements.

CMS-PAS-TOP-12-035

A_{fb} of the Top Quark

- Updated measurement from CDF in ℓ +jets.
- Measured A_{FB} deviate most from SM at large $M_{t\bar{t}}$.

CDF Note 10975

P. 35 EPSHEP 2013, STOCKHOLM, JULY 22, 2013

- Fit $\cos \theta_t$ distribution with Legendre polynomials.
- Discrepancy with SM prediction only for the linear term (consistent with s-channel new physics).

W Helicity Fractions in Single Lepton Events from CMS

CMS-PAS-TOP-11-020

- Top pair production can be enhanced by new particles decaying into $t\bar{t}$ pairs (e.g. Z' or KK gluon).
- Search for narrow and broad resonances in $t\bar{t}$ invariant mass.

SARA STRANDBERG, STOCKHOLM UNIVERSITY

P. 39 EPSHEP 2013, STOCKHOLM, JULY 22, 2013

More details in plenary talk by Fabienne Ledroit

Resonances in $m_{t\bar{t}}$

CMS-PAS-B2G-12-006

CMS-PAS-B2G-12-005

SARA STRANDBERG, STOCKHOLM UNIVERSITY

P. 40 EPSHEP 2013, STOCKHOLM, JULY 22, 2013

• Excited states (t^{\star}, b^{\star}). Mass limits around 800 GeV.

Events / Ge\

Phys. Lett. B 721 (2013) 171-189 CMS-PAS-B2G-12-014

• Heavy vector bosons (W'). Mass limits $\mathcal{O}(1-2 \text{ TeV})$.

More details in plenary talk by Freya Blekman Other New Physics Searches

• Vector-like quarks. Mass limits $\mathcal{O}(700 \text{ GeV})$. $(T \rightarrow Zt, T \rightarrow Wb, T \rightarrow Ht, B \rightarrow Zb)$

P. 42 EPSHEP 2013, STOCKHOLM, JULY 22, 2013

ATLAS

Preliminary

dt = 14.3 fb

vs = 8 TeV ee + µµ

12

10

data 201

Z+bottom

Other bkg

Z+light

lepton+jets m	ton: ATLAS	vs CMS	comparison
---------------	------------	--------	------------

_	Uncertainty Categ	ATLAS / CMS		
Tevatron ATLAS		CMS	2011 <i>l</i> +jets	2011 <i>l</i> +jets
	Measured mto	0	172.31	173.49
	Jet Scale Factor bJet Scale Factor	Jet Scale Factor	0.27	0.33
iJES	Sum	Sum	0.72	0.33
bJES	JES b- iet	JES h-iet	0.08	0.61
dJES	JES light-jet	JES light-jet	0.79	0.28
	Lepton pT Sca	le	0.04	0.02
MC	MC Generator Hadronisation	MC Generator	0.19 0.27	
	Sum	Sum	0.33	
Rad	ISR/FSR	ISR/FSR Q-Scale Jet-Parton Scale	0.45	0.24 0.18
	Sum	Sum	0.45	0.30
CR	Colour Recon.		0.32	0.54
PDF	Proton PDF	Proton PDF	0.17	0.07
	Jet Energy Res. Jet Rec. Eff. b-tagging E ^{miss}	Jet Energy Res. b-tagging	0.22 0.05 0.81 0.03	0.23
DetMod	Sum	Sum	0.84	0.27
	Underlying Eve	ent	0.12	0.15
	BGMC			0.13
	BGData		0.10	207.535
Method	Method Calib.	Method Calib.	0.13	0.06
MHI	Pile-up	Pile-up	0.03	0.07
		Statistics Rest Total Uncertainty	0.23 1.53 1.55	0.27 1.03 1.07

Summary table of public 2011 LHC m_{top} measurements in the lepton+jets channel, likely to drive the next LHC combination

Systematics categorized according to the first LHC combination CMS measurement from: JHEP (2012) 2012:105

				-	top
	Uncertainty Categ	gories		10110	
		ATLAS / CMS			
Tevatron	ATLAS	CMS	2011	2011	
			l+jets	l+jets	
	Measured mto	p	172.31	173.49	
	Jet Scale Factor	Jet Scale Factor	0.27	0.33	
	bJet Scale Factor		0.67	1.5.4.6.04.4.4.	-
iJES	Sum	Sum	0.72	0.33	
bJES	JES b-jet	JES h-jet	0.08	0.61	
dJES	JES light-jet	JES light-jet	0.79	0.28	
	Lepton p_T Sca	le	0.04	0.02	
MC	MC Generator	MC Generator	0.19		
	Hadronisation		0.27		
	Sum	Sum	0.33		
Rad	ISR/FSR	ISR/FSR	0.45		
		Q-Scale		0.24	
		Jet-Parton Scale		0.18	
	Sum	Sum	0.45	0.30	
CR	Colour Recon.		0.32	0.54	
PDF	Proton PDF	Proton PDF	0.17	0.07	
	Jet Energy Res.	Jet Energy Res.	0.22	0.23	
	Jet Rec. Eff.	232	0.05	0.852-5320	
	b-tagging	b-tagging	0.81	0.12	
	E ^{miss}	Emiss	0.03	0.06	
DetMod	Sum	Sum	0.84	0.27	
	Underlying Eve	0.12	0.15		
	BGMC		0.13		
	BGData		0.10		
Method	Method Calib.	Method Calib.	0.13	0.06	
MHI	Pile-up	Pile-up	0.03	0.07	
		Statistics	0.23	0.27	4
		Rest	1.53	1.03	
		Total Uncertainty	1.55	1.07	

lepton+jets m_{top}: ATLAS vs CMS comparison

Statistical sensitivity

- extra statistical uncertainties on m_{top}
- introduced by the simultaneous JSF/bJSF fits
- Scale with luminosity, uncorrelated between experiments
- Similar sensitivity to JSF from the insitu m_w fits (0.27 vs 0.33 GeV)
- ATLAS has larger JES stat component (iJES) due to the increased dimensionality of the fit (extra 0.67 GeV)

Similar statistical sensitivity to m_{top} (corresponds to a 1d fit)

top quark mass in ATLAS - EPS HEP 18-24 July 2013

SARA STRANDBERG, STOCKHOLM UNIVERSITY

		lep	oton	+jets	m _{top} : ATLAS vs CMS comparison
	Uncertainty Categ	ories	ATLAS	/ CMS	
Tevatron	ATLAS	CMS	2011 <i>l</i> +jets	2011 <i>l</i> +jets	
	Measured mto	'n	172.31	173.49	
	Jet Scale Factor bJet Scale Factor	Jet Scale Factor	0.27 0.67	0.33	
iJES	Sum	Sum	0.72	0.33	
bJES	JES b-jet	JES b-jet	0.08	0.61	
dJES	JES light-jet	JES light-jet	0.79	0.28	Reduced bJES uncertainty
	Lepton pT Sca	le	0.04	0.02	thanks to 3rd dimension in the fit
MC	MC Generator Hadronisation	MC Generator	0.19 0.27		
	Sum	Sum	0.33		
Rad	ISR/FSR	ISR/FSR Q-Scale Jet-Parton Scale	0.45	0.24 0.18	
	Sum	Sum	0.45	0.30	
CR	Colour Recon.		0.32	0.54	
PDF	Proton PDF	Proton PDF	0.17	0.07	
0.04 707 01	Jet Energy Res. Jet Rec. Eff.	Jet Energy Res.	0.22 0.05	0.23	
	b-tagging E ^{miss}	b-tagging $E_{\mathrm{T}}^{\mathrm{miss}}$	0.81 0.03	0.12 0.06	
DetMod	Sum	Sum	0.84	0.27	
	Underlying Eve	ent	0.12	0.15	
	BGMC			0.13	
	BGData		0.10		
Method	Method Calib.	Method Calib.	0.13	0.06	
MHI	Pile-up	Pile-up	0.03	0.07	
		Statistics	0.23	0.27	
Rest		1.53	1.03		
		Total Uncertainty	1.55	1.07	
top quark	mass in ATLAS	- EPS HEP 18-2	24 July 2	013	

	ATLAS / CMS			
Tevatron ATLAS		CMS	2011 /+jets	2011 <i>l</i> +jets
	Measured mto	0	172.31	173.49
	Jet Scale Factor bJet Scale Factor	Jet Scale Factor	0.27 0.67	0.33
iJES	Sum	Sum	0.72	0.33
bJES	JES b-jet	JES h-jet	0.08	0.61
dJES	JES light-jet	JES light-jet	0.79	0.28
	Lepton p_T Sca	le	0.04	0.02
MC	MC Generator Hadronisation	MC Generator	0.19 0.27	
	Sum	Sum	0.33	
Rad	ISR/FSR	ISR/FSR Q-Scale Jet-Parton Scale	0.45	0.24 0.18
	Sum	Sum	0.45	0.30
CR	Colour Recon.		0.32	0.54
PDF	Proton PDF	Proton PDF	0.17	0.07
	Jet Energy Res. Jet Rec. Eff. b-tagging	Jet Energy Res. <i>b</i> -tagging	0.22 0.05 0.81	0.23
	E _T	E _T	0.03	0.06
Detwood	Junderhuing Dre	Sum	0.12	0.27
	Underlying Eve	int	0.12	0.13
	BGMC		0.10	0.15
Mathod	Method Collib	Mathad Calib	0.10	0.06
MU	Dile un	Dila un	0.03	0.00
WITH	Pile-up	Pite-up	0.05	0.07
		Statistics Rest	0.23	0.27

lepton+jets m_{top}: ATLAS vs CMS comparison

Different residual JES uncertainties, despite the in-situ m_w calibration More pronounced p_T dependence of the JES uncertainty for ATLAS, softer jet p_T requirements

		154	i.	-
	Uncertainty Categ	gories		/ CMS
	THEFT	2017 Dar 9	AILAS	/ CIVIO
Tevatron	ATLAS	CMS	2011	2011
			l+jets	l+jets
	Measured m _{to}	P	172.31	173.49
	Jet Scale Factor	Jet Scale Factor	0.27	0.33
	bJet Scale Factor		0.67	
iJES	Sum	Sum	0.72	0.33
bJES	JES b- jet	JES h-jet	0.08	0.61
dJES	JES tight-jet	JES light-jet	0.79	0.28
	Lepton p_T Sca	le .	0.04	0.02
MC	MC Generator	MC Generator	0.19	
	Hadronisation		0.27	
	Sum	Sum	0.33	
Rad	ISR/FSR	ISR/FSR	0.45	
		Q-Scale		0.24
		Jet-Parton Scale		0.18
1	Sum	Sum	0.45	0.30
CR	Colour Recon.		0.32	0.54
PDF	Proton PDF	Proton PDF	0.17	0.07
	Jet Energy Res.	Jet Energy Res.	0.22	0.23
	Jet Rec. Eff.		0.05	
	b-tagging	b-tagging	0.81	0.12
	Emiss	Emiss	0.03	0.06
DetMod	Sum	Sum	0.84	0.27
	Underlying Eve	ent	0.12	0.15
	BGMC		0.010.10.020	0.13
	BGData		0.10	
Method	Method Calib.	Method Calib.	0.13	0.06
MHI	Pile-up	Pile-up	0.03	0.07
		Statistics	0.23	0.27
		Rest	1.53	1.03
		1.55	1.07	

lepton+jets m_{top}: ATLAS vs CMS comparison

MC generator and hadronization (Pythia/Herwig) uncertainties:

Not dominant uncertainties for ATLAS 3d analysis but could be large depending on the analysis

Within CMS:

- the MC generator systematics are found to be small (but are not documented for all the current public results)
- Hadronization systematics are meant to be covered by the JES uncertainty

Harmonized treatment is under discussion in the TOP-LHC-WG for the next LHC combination

Need to evaluate possible double counting effects between the hadronization and JES systematics

		lep	oton-	+jets	m _{top} : ATLAS vs CMS comparisor			
	Uncertainty Categ	ories	ATLAS	/ CMS				
Tevatron	ATLAS	CMS	2011 <i>l</i> +jets	2011 <i>l</i> +jets				
	Measured mtor	p	172.31	173.49				
	Jet Scale Factor bJet Scale Factor	Jet Scale Factor	0.27 0.67	0.33				
iJES	Sum	Sum	0.72	0.33				
bJES	JES b-jet	JES b-jet	0.08	0.61	ATLAC 2d analysis has a lawser constituity			
dJES	JES light-jet	JES light-jet	0.79	0.28	 ATLAS 3d analysis has a larger sensitivity 			
	Lepton pT Sca	le	0.04	0.02	to b-tag systematics, mainly due to p.			
MC	MC Generator Hadronisation	MC Generator	0.19		dependence of the b-tagging SF			
	Sum	Sum	0.33		uncertainties, that affect the shape of R ^{rec}			
Rad	ISR/FSR	ISR/FSR Q-Scale Jet-Parton Scale	0.45	0.24 0.18	/			
	Sum	Sum	0.45	0.30	1 /			
CR	Colour Recon.		0.32	0.54				
PDF	Proton PDF	Proton PDF	0.17	0.07				
	Jet Energy Res. Jet Rec. Eff.	Jet Energy Res.	0.22	0.23	1.6 ATLAS Preliminary 1.6 Ldt= 4.7 fb ⁻¹ MV1 70% MV1 70%			
	b-tagging	b-tagging	0.81	0.12	vis= 7 TeV			
	$E_{\mathrm{T}}^{\mathrm{mixs}}$	$E_{\mathrm{T}}^{\mathrm{miss}}$	0.03	0.06	12			
DetMod	Sum	Sum	0.84	0.27				
	Underlying Eve	ent	0.12	0.15				
	BGMC			0.13				
	BGData		0.10					
Method	Method Calib.	Method Calib.	0.13	0.06				
MHI	Pile-up	Pile-up	0.03	0.07	50 100 150 200 250 300			
		Statistics	0.23	0.27	Jet P _T (Jev			
		Rest	1.53	1.03				
		Total Uncertainty	1.55	1.07				
op quark	mass in ATLAS	- EPS HEP 18-2	4 July 20	013	30			