

Properties of the New Boson

On behalf of ATLAS, CMS, CDF and D0 Collaborations

Outline

Thanks to Greg for nice experimental overview on Higgs results which are input to properties determination

- Introduction
- Properties:
 - Mass measurements
 - Spin-Parity determination
 - Couplings from signal strengths $\mu = [\sigma \times BR] / [\sigma \times BR]_{SM}$
 - Differential cross-sections in γγ final state
- Conclusions

Bibliography used in this talk

• ATLAS:

http://twiki.cern.ch/twiki/bin/view/AtlasPublic/HiggsPublicResults

- Phys. Lett. B 716 (Discovery)
 - arXiv:1307.1432 Sub. Phys. Lett. B (Spin)
 - arXiv:1307.1427 Sub. Phys. Lett. B (Couplings)
- ATLAS-CONF 2013-040 (Spin)
- ATLAS-CONF 2013-029 (γγ)
- ATLAS-CONF 2013-031 (WW*)
- ATLAS-CONF 2013-013 (ZZ*)
 - ATLAS-CONF-2013-079 (VH→bb)
 - ATLAS-CONF-2013-072 (Η \rightarrow γγ diff. σ)
- ATLAS-PHYS-PUB 2012-001/002 (HL-LHC)
- CDF + D0:

http://tevnphwg.fnal.gov/

- arXiv:1207.6436 Phys. Rev. Lett 109 (Evidence H→bb)
- arXiv:1303.6346 Subm. Phys. Rev. D
 (Combination Couplings)
 - D0 note 6387-CONF (Spin 2+ studies)

CMS:

http://cms.web.cern.ch/org/cms-papers-and-results

- Phys. Lett. B 716 (Discovery)
- arXiv:1212.6639 Phys. Rev. Lett. 110
 (ZZ*, Spin)
 - **CSM-PAS-HIG-13-016 (Properties γγ)**
 - CMS-PAS-HIG-13-018 (ZH→Z-invisible)
- CMS-PAS-HIG-13-005 (Couplings)
- CMS-PAS-HIG-13-012 (H → bb)
- CMS-PAS-HIG-13-001 (γγ)
- CMS-PAS-HIG-13-002 (ZZ*, Spin)
- CMS-PAS-HIG-13-003 (WW*)
- CMS-PAS-HIG-13-004 (ττ)
- CMS-NOTE-2012-006 (HL-LHC)
- LHC-XS Higgs wg:

http://twiki.cern.ch/twiki/bin/view/LHCPhysics/CrossSections

arXiv:1307.1347 (Yellow Report 3: σ, BR and coupling and spin/CP-fit models)

material form excellent parallel session talks !

- <u>1 year ago</u> ATLAS and CMS Collaborations announced the discovery of a NEW neutral Boson supported by D0 and CDF results
- Since then the ATLAS, CMS, CDF and D0 Collaborations focused on two questions:
 - Is this new boson responsible for the EW symmetry breaking BEH mechanism providing masses to Fermions and Bosons:
 "the SM Higgs boson" ?
 - Can we find signs of Physics Beyond the SM (BSM) studying its properties ?
- Addressed experimentally by *properties measurement* in next slides ...

Mass Measurement

Measured from $\gamma\gamma$ and ZZ*(4 ℓ) mass spectra: needed to predict σ ×BR

*Independent of signal strengths: used by ATLAS and CMS coupling/spin analyses

Experimental approach:

- Use observables that are sensitive to Spin and Parity of the New Boson independent of the coupling strengths
- Several alternative specific models: 0⁻, 1⁺, 1⁻, 2⁺ tested against the SM Higgs 0⁺ hypothesis

Spin-Parity Determination

Analyzed channels:

- H→ γγ decay angle cos(θ^{*}) in Collins-Sopper frame sensitive to J
- $H \rightarrow WW^* \rightarrow \ell \nu \ell \nu$ Several variables sensitive to J^P
 - $\ \Delta \varphi_{\ell \, \ell}$, $M_{\ell \, \ell}$, ..
 - Combined with Boosted-Decision-Tree (BDT)
- $H \rightarrow ZZ^* \rightarrow 4\ell$: Full final state reconstruction sensitive to J^P
 - 2 masses (M_{Z1}, M_{Z2}) and 5 angles
 - Combined with BDT or Matrix-Element-based discriminant D_{JP}

Test of 0⁺ vs 0⁻

$ZZ^* \rightarrow 4\ell$ channel used by CMS and ATLAS:

Test Statistic:
$$q = \log \frac{\mathcal{L}(J^P = 0^+, \hat{\hat{\mu}}_{0^+}, \hat{\hat{\theta}}_{0^+})}{\mathcal{L}(J^P_{alt}, \hat{\hat{\mu}}_{J^P_{alt}}, \hat{\hat{\theta}}_{J^P_{alt}})}$$

ATLAS:

O⁻ Excluded @ 97.8% CL (exp. 99.6%)

CMS:

• 0⁻ Excluded @ 99.8% CL (exp. 99.5%)

Compatible with SM 0⁺

Beyond 2 hypotheses Test: 0⁺ vs 0⁻

CMS investigated sensitivity to different CP Amplitudes in ZZ* channel

 $A = v^{-1} \epsilon_1^{*\mu} \epsilon_2^{*\nu} \left(\underline{a_1 g_{\mu\nu} m_H^2} + a_2 q_\mu q_\nu + \underline{a_3 \epsilon_{\mu\nu\alpha\beta} q_1^{\alpha} q_2^{\beta}} \right) = \underline{A_1} + A_2 + \underline{A_3}$

- SM Higgs at LO corresponds to a₁=1 and a₂=a₃=0
- A₃= CP odd Amplitude
- Fit for $f_{a3} = |A_3|^2 / (|A_1|^2 + |A_3|^2)$: check the presence of a O⁻ component (assuming $a_2=0$) - impact of interference very small on used observables

• CMS: $f_{a3} = 0.00 + 0.23_{-0.00}$

f_{a3} < **0.56 at 95% CL** (exp. 0.76)

Test of 0⁺ vs 2⁺

Graviton inspired model with minimal couplings to SM particles

It can be produced via gg or qq annihilation:

 f_{qq} = faction of qq/gg produced signals (In minimal model 2⁺_m at LO in QCD expected f_{qq} =4%)

ATLAS: **Combined:** $\gamma\gamma + ZZ^* \rightarrow 4\ell + WW^* \rightarrow \nu\ell \nu\ell$

- 2⁺ (100% qq) Excluded at >99.9% CL (exp. >99.9%)
- 2⁺ (100% gg) Excluded at >99.9% CL (exp. 99.9%)

CMS: **Combined** $ZZ^* \rightarrow 4\ell + WW^* \rightarrow \nu\ell \nu\ell$

2⁺ (100% gg) Excluded at 99.4% CL (exp. 98.8%)

Both experiments: Compatible with SM 0⁺

Spin-Parity ATLAS - CMS Overview

CMS ZZ*(4 ℓ)

J^p	production	comment	expect (µ=1)	obs. 0 ⁺	obs. J ^p	CLs
0-	$gg \rightarrow X$	pseudoscalar	2.6 σ (2.8σ)	0.5σ	3.3 <i>σ</i>	0.16%
0_h^+	$gg \rightarrow X$	higher dim operators	$1.7\sigma (1.8\sigma)$	0.0σ	1.7σ	8.1%
2^{+}_{mgg}	$gg \rightarrow X$	minimal couplings	1.8σ (1.9σ)	0.8σ	2.7σ	1.5%
$2^+_{mq\bar{q}}$	$q\bar{q} \rightarrow X$	minimal couplings	1.7σ (1.9σ)	1.8σ	4.0σ	<0.1%
1- "	$q\bar{q} \rightarrow X$	exotic vector	2.8 σ (3.1σ)	1.4σ	$>4.0\sigma$	<0.1%
1+	$q\bar{q} \rightarrow X$	exotic pseudovector	2.3σ (2.6 σ)	1.7σ	$>4.0\sigma$	<0.1%

ATLAS and CMS: *"bosonic"* decay modes

Strongly favor J^P = 0⁺ SM quantum numbers

All alternative J^P models tested: **Excluded** @ >95% CL

ATLAS

D0: Test of 0⁺ vs 2⁺

Graviton-inspired model with minimal couplings to SM

 X=2⁺ ~β⁵ threshold behavior (0⁺ ~β) for VX→Vbb production: Sensitive observable *Mass (Transverse)* of the VX system

assuming μ =1.23 (as measured in the Data for the SM Higgs search) - Combining *lbb*, *vbb* and *vvbb*

2⁺ Excluded at 99.9% CL – 3.1σ (μ = 1 exp. 99.9%)

Compatible with SM 0⁺

*Studies for 0⁻ hypothesis in the pipeline ...

NEW Boson Couplings

Crucial TEST of SM BEH mechanism $\rightarrow g_F \alpha m_F$ and $g_{W,Z,H} \alpha M^2_{W,Z,H}$

- SM couplings tested introducing *coupling scale factors* $\kappa \rightarrow g_i = g_i^{SM} \times \kappa_i$
 - SM Tree-Level Amplitudes:
 - $\Gamma_{\rm ff} \quad \alpha \quad (\kappa_{\rm f} \times m_{\rm f} / v)^2 \quad \alpha \quad \kappa_{\rm f}^2 \, \times \, \Gamma_{\rm ff}^{\rm SM} \qquad (v = 246 \text{ GeV from } G_{\rm F})$
 - $\Gamma_{\rm WW} \alpha (\kappa_{\rm W} \times M_{\rm W}^2/v)^2 \alpha \kappa_{\rm W}^2 \times \Gamma_{\rm WW}^{\rm SM}$
 - $\Gamma_{ZZ} \quad \alpha \ (\kappa_Z \times M_Z^2 / v)^2 \ \alpha \ \kappa_Z^2 \times \Gamma_{ZZ}^{SM}$
 - SM Loop-level: best place to look for physics Beyond the Standard Mode

•
$$\Gamma_{\gamma\gamma} \quad \alpha \quad |1.28 \kappa_W - 0.28 \kappa_t|^2 \times \Gamma^{SM}_{\gamma\gamma} \rightarrow Wt \text{ interference } h$$

• $\Gamma_{gg}, \Gamma_{\gamma Z, \dots}$

• Theory errors for SM Higgs boson:

- $\sigma_{\rm H}$ ~ (11-5)% larger in ggH and ttH - BR_H ~ (3-6%)

*Mass dependency small: Max ~ 4%/0.5 GeV for $\Gamma_{\rm ZZ}$

The Couplings Test

- Follow recommendations from LHC Higgs xs-wg: arXiv1307.1347 (YR3) assuming:
 - 1 resonance + <u>Zero-Width Approx.</u> + SM Lagrangian Tensor Structure (J^P=0⁺)

$$\sigma \times BR(ii \to \mathbf{H} \to ff) = \frac{\sigma_{ii} \cdot \Gamma_{ff}}{\Gamma_{\mathbf{H}}}$$

- Approach suitable to test SM predictions exploiting correlations between production (gg, VBF, VH, ttH) and decay modes with current precision
- e.g., measured yield ZH \rightarrow Zbb parameterized as: $\mu(ZH\rightarrow Zbb) = [\sigma_{ZH}xBR(H\rightarrow bb)]/[\sigma_{ZH}xBR(H\rightarrow bb)]_{SM} = (\kappa_z^2 \times \kappa_b^2)/\kappa_H^2$

<u>SM Higgs boson \rightarrow All μ and κ compatible with 1</u>

- Loop scaling factors κ_{γ} , κ_{g} can be :
 - Expressed as a function of SM couplings scale factors: $\kappa_{\gamma}(\kappa_{W},\kappa_{t})$
 - Treated as free parameter to test BSM contributions
- $\Gamma_{\rm H}$ need assumptions: ratios, relationships $\kappa_{\rm H} = \kappa_{\rm H}(\kappa_{\rm b}, \kappa_{\rm W},...), ...$

The signal Strength $\boldsymbol{\mu}$

- Combined $\mu \rightarrow$ Best accuracy but no strong physics motivation:
 - ATLAS (γγ, WW* and ZZ*)
 - CMS ($\gamma\gamma$, $\tau\tau$, bb, WW* and ZZ*) μ = (0.80 ± 0.14)
 - TEVATRON (bb, γγ, ττ, WW*) μ = (1.44 ± 0.60)

Compatible with SM Higgs boson expectation: Accuracy ~ 15%

 $\mu = (1.33 \pm 0.20)$ (1.23±0.18 including bb and $\tau\tau$)

Evidence for V-mediated Production

Disentangle production modes: V-mediated vs F-mediated

Fit to $\mu_{VBF+VH}/\mu_{gg+ttH}$ in different channels (BR's cancels out):

- CMS: Evidence for V-boson mediated production 3.2σ
- ATLAS: Evidence for VBF production (VH "profiled") 3.3σ

V-mediated production compatible with SM prediction

F. Cerutti LBNL - EPS-HEP Stockolm 2013

Test of Vector vs Fermion sectors $\kappa_V - \kappa_F$

- Assumptions:
 - All Fermion couplings scale as κ_{F} (= κ_{t} = κ_{b} = κ_{τ} =...)
 - All Vector Boson couplings scale as $\kappa_V (=\kappa_W = \kappa_Z)$
 - No BSM contributions to $\Gamma_{\rm H} \rightarrow \kappa^2_{\rm H} (\kappa_{\rm F} \kappa_{\rm V}) \sim 0.7 \kappa^2_{\rm F} + 0.3 \kappa^2_{\rm V}$ and $\kappa_{\rm g} (\kappa_{\rm F} \kappa_{\rm V}) \kappa_{\rm V} (\kappa_{\rm F} \kappa_{\rm V})$

- All experiments compatible with SM predictions: accuracy ~10-20%
 - ATLAS: κ_v [1.05,1.22] at 68% CL κ_F [0.76,1.18] at 68% CL
 - CMS: κ_v [0.74,1.06] at 95% CL κ_F [0.61,1.33] at 95% CL
- κ_F=0 Excluded at >5σ (mainly indirect via gg loop)
 5/22/13 F. Cerutti LBNL EPS-HEP Stockolm 2013

Test of loop induced couplings: $\kappa_g vs \kappa_v$

- Assumptions:
 - Tree-level Coupling to SM particles as in SM: $\kappa_{b} = \kappa_{W} = \kappa_{z} = \kappa_{\tau} = \kappa_{t} \dots = 1$
 - No BSM contributions to $\Gamma_{\rm H} \rightarrow \kappa_{\rm H} \approx 0.9 + 0.1 \kappa_{\rm g}$

- Both experiments: compatible with SM predictions Accuracy ~10-15%
 - ATLAS: $\kappa_g = (1.04 \pm 0.14)$ at 68% CL $\kappa_{\gamma} = (1.20 \pm 0.15)$ at 68% CL
 - CMS: κ_g [0.63,1.05] at 95% CL κ_{γ} [0.59,1.30] at 95% CL

Constraints on BR_{BSM}

- Greg has shown <u>direct search</u> for: $ZH \rightarrow \mathscr{U}$ -Invisible
 - ATLAS: BR_{inv} < 0.60 @ 95% CL (0.84 exp.)
 - CMS: BR_{inv} < 0.75 @ 95% CL (0.91 exp.)</p>
- We can parameterize: $\Gamma_{H} = \Gamma_{SM} + \Gamma_{BSM}$

 $BR_{BSM} = \Gamma_{BSM} / \Gamma_{H}$

- This quantity is sensitive also to other *undetectable* decay modes: H → light hadrons
- ATLAS:
 - Assumptions three-level couplings: $\kappa_{b} = \kappa_{W} \dots = 1$
 - 3 Fitted Par.: $\kappa_{\gamma} \kappa_{g} + BR_{BSM}$
 - BR_{BSM} < 0.60 @ 95% CL (0.67 exp.)
- CMS:
 - Assumption: $\kappa_{V} \leq 1$ (motivated by EWSB)
 - 7 Fitted Par.: $\kappa_V \kappa_b \kappa_\tau \kappa_t \kappa_\gamma \kappa_g + BR_{BSM}$
 - BR_{BSM} < 0.64 @ 95% CL (0.66 exp.)</p>

Couplings Overview

Different Sectors of the New Boson Couplings tested: P_{SM}>12%

All compatible with SM Higgs expectations

2

10

1 c

20

2

Differential Cross sections in yy final state

- ATLAS: fiducial differential cross-sections
 - $d\sigma/dP_{T\gamma\gamma}$, $d|y_{\gamma\gamma}|$, $d|\cos(\theta^*)|$, dN_{jets} , $d\phi_{JJ}$, ...
 - Unfolded to particle level
 - Sensitive to: PDF, QCD, production mechanism, spin, Lagrangian tensor structure, ...

Probabilities of χ^2 compatibility tests for Data vs Predictions for different observables

	N _{jets}	$p_{\mathrm{T}}^{\gamma\gamma}$	$ y^{\gamma\gamma} $	$ \cos\theta^* $	$p_{\mathrm{T}}^{j_1}$	$\Delta \phi_{jj}$	$p_{\mathrm{T}}^{\gamma\gamma jj}$
POWHEG	0.54	0.55	0.38	0.69	0.79	0.42	0.50
MINLO	0.44	_	_	0.67	0.73	0.45	0.49
HRES 1.0	_	0.39	0.44	_	_	_	_

Data in agreement with tested predictions (Powheg, MINLO, Hres1.0) within current experimental accuracy

Conclusions

- 1 year after the discovery properties of the New boson measured with increasing precision thanks to <u>outstanding LHC performance</u> and improved analysis from CDF and D0:
 - Mass measured at the 3 per mill level
 - Evidence for scalar nature 0⁺ (though CP mixing not excluded)
 - Evidence for couplings to Fermions: direct >3 σ and indirect >5 σ
 - Evidence for V-mediated and VBF production
 - Coupling Tests compatible with SM predictions
 - No sign (yet ?) for BSM contributions: invisible decays, $\Gamma_{\rm BSM}$, loop couplings ..

All measured properties compatible with the SM Higgs boson

- Coming soon: final RUN1 publications from CMS and ATLAS
- In 2015 LHC will increase E_{CM} (σ_{H} ~2.6) and Luminosity (10³⁴cm⁻²s⁻¹)
 - Increase sensitivity to challenge the SM predictions:

This is just the *beginning* of a

rich and exciting "Higgs physics program" !

Thanks to Parallel Sessions Speakers !

• Material from the excellent talks in parallel session:

J.B. De Vivie, D.M Sheafer, C. Botta, M. Donega, K.N. Herner, D.O'Neil, M. De Gruttola, M. Bluj, F. Margaroli, M. Kucharchizyk, D. Lopez Mateos, M. Dueherssen, J. Bendavid, J. Elmsheuser, N. Kostantinidis

BACKUP SLIDES

Mass Measurements

Mass Measurement: ATLAS

ATLAS tension between $\gamma\gamma$ and $ZZ^*(4\ell)$ mass measurements

• Dedicated Likelihood with different mass parameterization:

 M_{H} and ΔM_{H}

- $\Delta M_{H} = 2.3 \pm 0.7_{stat} \pm 0.6_{sys}$ GeV = $2.3 \pm 0.9_{tot}$ (M_H "profiled")
- Probability to observe such a large (or larger) difference if $\Delta M_{H} = 0$ evaluated at 1.5% (2.4 σ)
- If main systematics on Electromagnetic-Energy Scale shifted by 1σ probability increases to 8%
- Updates final $\gamma\gamma$ and $ZZ^*(4\ell)$ publications this fall:
 - better EES calibration (material description, ..), improved ZZ* mass analysis (MVA techniques, event by event errors, ..)

Spin-Parity determination

• Used as test statistics the likelihood ratio q:

$$\mathcal{L}(J^{P},\mu,\theta) = \prod_{j}^{N_{chann.}} \prod_{i}^{N_{bins}} \qquad q = \log \frac{J}{q}$$

$$P(N_{i,j} \mid \mu_{j} \cdot S_{i,j}^{(J^{P})}(\theta) + B_{i,j}(\theta)) \times \mathcal{A}_{j}(\theta)$$

$$q = \log \frac{\mathcal{L}(J^P = 0^+, \hat{\hat{\mu}}_{0^+}, \hat{\hat{\theta}}_{0^+})}{\mathcal{L}(J^P_{\text{alt}}, \hat{\hat{\mu}}_{J^P_{\text{alt}}}, \hat{\hat{\theta}}_{J^P_{\text{alt}}})}$$

- Signal strengths μ_{JP} treated as independent Nuisance-Parameter for each channel and each spin hypothesis
- Probability distributions for different J^P hypothesis derived via pseudo-experiments
- When deriving exclusions use *CL_s*:

 $CL_s(J_{alt}^P) = \frac{p_0(J_{alt}^P)}{1 - p_0(0^+)}$

Test of 0⁺ vs 1⁺ / 1⁻

ATLAS: **combined** WW* $\rightarrow \nu\ell\nu\ell$ + ZZ* $\rightarrow 4\ell$

- 1⁺ Excluded at 99.97% CL (exp. 99.95%)
- 1⁻ Excluded at 99.7% CL (exp. 99.4%)

CMS: $ZZ^* \rightarrow 4\ell$

- 1⁺ Excluded at >99.9% CL (exp. 99.7%)
- 1⁻ Excluded at >99.9% CL (exp. 99.5%)

Compatible with SM Higgs 0⁺

Test of 0⁺ vs 2⁺_m f_{qq} scan

Graviton inspired with minimal couplings to SM particles Tensor can be produced via gg or qq annihilation ATLAS: γγ + WW* + ZZ*

- 2⁺_m (100% qq) Excluded at >99.99% CL (exp. >99.99%)
- 2⁺_m (100% gg) Excluded at 99.98% CL (exp. 99.94%)

F. Cerutti LBNL - EPS-HEP Stockolm 2013

Channels/Categories used in the coupling tests

CMS - CSM-PAS-HIG-13-005

ATLAS: - arXiv:1307.1427 Sub. Phys Lett. B

H decay	Prod. tag	A nalyses Exclusive final states	No. of channels	m _H resolution	Lumi 7 TeV	i (fb ⁻¹) 8 TeV	Higgs Boson	Subseque	nt Sub-Channels $\int_{r_{t}}$	Ldt
	untagged	$\gamma\gamma$ (4 diphoton classes)	4+4	1-2%	5.1	19.6	Decay	Decay	[1	10.1
$\gamma\gamma$	VBF-tag	$\gamma \gamma + (jj)_{\text{VBF}}$ (two dijet classes for 8 TeV)	1+2	< 1.5%	5.1	19.6				
	VH-tag	$\gamma\gamma + (e, \mu, MET)$	3	<1.5%		19.6			$2011 \sqrt{s} = 7 \text{ TeV}$	
$ZZ\to 4\ell$	$N_{\text{jet}} < 2$	4e, 4µ, 2e2µ	3+3	1-2%	5.1	19.6	$H \rightarrow ZZ^{(*)}$	4ℓ	$\{4e, 2e2\mu, 2\mu 2e, 4\mu, 2\text{-jet VBF}, \ell\text{-tag}\}$	4.6
	$N_{jet} \ge 2$	$(DE \text{ or } SE \text{ dilentone}) \times (0 \text{ or } 1 \text{ ists})$	3+3	20%	4.0	105			10 categories	4.0
$WW \rightarrow \ell \nu \ell \nu$	VBF-tag	$\ell \nu \ell \nu + (jj)_{VBF}$ (DF or SF dileptons for 8 TeV)	1+2	20%	4.9	19.5	$H \rightarrow \gamma \gamma$	-	$\{p_{\text{Tt}} \otimes \eta_{\gamma} \otimes \text{conversion}\} \oplus \{2\text{-jet VBF}\}$	4.8
	WH-tag	$3\ell 3\nu$ (same-sign SF and otherwise)	2 + 2		4.9	19.5	$H \rightarrow WW^{(*)}$	lvlv	$\{ee, e\mu, \mu e, \mu\mu\} \otimes \{0\text{-jet}, 1\text{-jet}, 2\text{-jet} \text{ VBF}\}$	4.6
	0/1-jet	$(e\tau_{h}, \mu\tau_{h}, e\mu, \mu\mu) \times (low or high p_{T}^{\tau})$	16 + 16							
ττ	1-jet VBF-tag	$\overline{\tau}_h \overline{\tau}_h$ (e τ_h , $\mu \tau_h$, e μ , $\mu \mu$, $\overline{\tau}_h \tau_h$) + (<i>jj</i>)_{VBF}	1+1 5+5	15%	4.9	19.6			2012 $\sqrt{s} = 8 \text{ TeV}$	
	ZH-tag	$(ee, \mu\mu) \times (\tau_h \tau_h, e\tau_h, \mu\tau_h, e\mu)$	8+8		5.0	19.5	$H \rightarrow ZZ^{(*)}$	4ℓ	$\{4e, 2e2\mu, 2\mu 2e, 4\mu, 2\text{-jet VBF}, \ell\text{-tag}\}\}$	20.7
	WH-tag	$\tau_h \mu \mu, \tau_h e \mu, e \tau_h \tau_h, \mu \tau_h \tau_h$	4+4		0.0	1000			14 categories	
	VH-tag	$(\nu\nu, ee, \mu\mu, e\nu, \mu\nu \text{ with 2 b-jets}) \times (\text{low or high } p_{T}(V) \text{ or loose b-tag})$	10 + 13	10%	5.0	12.1	$H \rightarrow \gamma \gamma$	-	$(\pi - 0, \pi - 0, \text{conversion}) \oplus (2 \text{ ist VIDE}) \oplus (\ell \text{ tog} - E^{\text{miss}} \text{ tog} - 2 \text{ ist VID})^{\ell}$	20.7
bb	tt H-tag	$(\ell \text{ with } 4, 5 \text{ or } \geq 6 \text{ jets}) \times (3 \text{ or } \geq 4 \text{ b-tags});$	6 + 6		5.0	5.1			$\{p_{\mathrm{Tt}} \otimes \eta_{\gamma} \otimes \text{conversion}\} \oplus \{2\text{-jet vBF}\} \oplus \{\ell\text{-tag}, E_{\mathrm{T}}^{\mathrm{mass}}\text{-tag}, 2\text{-jet vH}\}$	
	unnag	(ℓ with 6 jets with 2 b-tags); ($\ell\ell$ with 2 or \geq 3 b-tagged jets)	3+3		0.0	0.1	$H \rightarrow WW^{(*)}$	lvlv	$\{ee, e\mu, \mu e, \mu\mu\} \otimes \{0\text{-jet}, 1\text{-jet}, 2\text{-jet VBF}\}$	20.7

CDF - arXiv:1303.6346 Subm. Phys Rev. D

D0 - arXiv:1303.6346 Subm. Phys Rev. D

Channel	Lu	(fb^{-1})	Channel		$\underset{(\mathrm{fb}^{-1})}{\text{Luminosity}}$
$WH \rightarrow \ell \nu b \bar{b}$ 2-jet channels $4 \times (5 b\text{-tag categories})$		9.45	$WH \rightarrow \ell \nu b \bar{b}$ 2-jet channels $2 \times (4 b\text{-tag categories})$		9.7
$WH \rightarrow \ell \nu b \bar{b}$ 3-jet channels $3 \times (2 b$ -tag categories)		9.45	$WH \rightarrow \ell \nu b \bar{b}$ 3-jet channels $2 \times (4 b \text{-tag categories})$		9.7
$ZH \rightarrow \nu \bar{\nu} b \bar{b}$ (3 b-tag categories)	_	9.45	$ZH \rightarrow \nu \bar{\nu} b \bar{b}$ (2 b-tag categories)	$H ightarrow b ar{b}$	9.5
$ZH \to \ell^+ \ell^- bb$ 2-jet channels $2 \times (4 b \text{-tag categories})$ H	$f \rightarrow bb$	9.45	$ZH \rightarrow \ell^+ \ell^- b\bar{b}$ 2×(2 b-tag)×(4 lepton categories)		9.7
$ZH \rightarrow \ell^+ \ell^- bb$ 3-jet channels $2 \times (4 b \text{-tag categories})$		9.45	$H \to W^+ W^- \to \ell^{\pm} \nu \ell^{\mp} \nu$ 2×(0 jets,1 jet, ≥2 jets)		9.7
$WH + ZH \rightarrow jjbb \qquad (2 b-tag categories)$		9.45	$H + X \to W^+ W^- \to \mu^{\mp} \nu \tau_{\rm bad}^{\pm} \nu$ (3 τ categories)		7.3
$\frac{ttH \rightarrow W + 0W}{W} = 000 (4 \text{ jets}, 5 \text{ jets}, \geq 0 \text{ jets}) \times (5 \text{ o-tag categories})$		9.45	$H \to W^+ W^- \to \ell \bar{\nu} j j = 2 \times (2 \ b \text{-tag categories}) \times (2 \ \text{jets}, 3 \ \text{jets})$	π , π	9.7
$H \to W^+ W^- \qquad (e_{\mathcal{T}} x) + (u_{\mathcal{T}} x)$		9.7	$VH \rightarrow e^{\pm}\mu^{\pm} + X$	$H \rightarrow VV + VV$	9.7
$WH \rightarrow WW^+W^-$ (same sign leptons) $+$ (tri-leptons) $H \rightarrow$	W^+W^-	9.7	$VH \rightarrow \ell\ell\ell + X \; (\mu\mu e, 3 \times e\mu\mu)$		9.7
$WH \rightarrow WW^+W^-$ (tri-leptons with 1 τ_{had})		9.7	$VH \rightarrow \ell \bar{\nu} j j j j = 2 \times (\geq 4 \text{ jets})$		9.7
$ZH \rightarrow ZW^+W^-$ (tri-leptons with 1 jet.>2 jets)		9.7	$VH \to \tau_{\rm had} \tau_{\rm had} \mu + X (3 \ \tau \ \text{categories})$	$H \rightarrow \sigma^+ \sigma^-$	8.6
$H \to \tau^+ \tau^-$ (1 jet)+(≥ 2 jets) $H -$	$\rightarrow \tau^+ \tau^-$	6.0	$H + X \rightarrow \ell^{\pm} \tau_{\text{had}}^{\mp} jj = 2 \times (3 \tau \text{ categories})$	$\Pi \rightarrow \gamma \gamma \gamma$	9.7
$H \to \gamma \gamma 1 \times (0 \text{ jet}) + 1 \times (\geq 1 \text{ jet}) + 3 \times (\text{all jets}) $ H	$\rightarrow \gamma \gamma$	10.0	$H \to \gamma \gamma$ (4 categories)	$H ightarrow \gamma \gamma$	9.6
$H \to ZZ$ (four leptons) $H \to ZZ$	$\rightarrow ZZ$	9.7			

Production/Decay with Signal above 2σ

- Measure: Yields → Production x Decay
 - Production modes: gg, VBF, W/ZH, ttH
 - Decay Channels: $\gamma\gamma$, WW*, ZZ*, bb, $\tau\tau$, $\mu\mu$, $Z\gamma$

Observations Above 2o:

- ATLAS:
 - Production Modes: gluon-gluon($>5\sigma$), VBF($>3\sigma$), VH
 - Decay Channels: WW*(3.8σ), ZZ* (>5σ), γγ(>5σ)
- CMS:
 - Production Modes: gluon-gluon(>5σ), VH, VBF, (V+VBF)H(>3σ)
 - Decay Channels: WW*(4 σ), ZZ*(>5 σ), γγ(>3 σ), ττ, bb, combined ττ+bb (>3 σ)
- D0+CDF:
 - Production Modes: VH(>3σ)
 - Decay Channels: bb(>3σ)

Evidence for Direct Couplings to Fermions

- TEVATRON: CDF+D0 Combined VH→bb
 - -2.1σ excess
 - − σ (VH)×BR(H→bb) = (0.19 ± 0.09) pb SM for M_H=125 GeV → (0.12 ± 0.01) pb

- (VBF+V)H \rightarrow bb combination 2.1 σ excess
- $H \rightarrow \tau \tau$ 2.85 σ excess
- Combined $H \rightarrow (\tau \tau + bb) 3.4\sigma$ excess

- ATLAS (for M_H=125 GeV):
 - $H \rightarrow \tau \tau \mu = (0.7 \pm 0.7)$ (compatible with SM, with or without Higgs boson)
 - VH→bb μ= (0.2 ± 0.7) (compatible with SM, with or without Higgs boson)

The Couplings fit

•

- Loop contributions can:
 - Expressed as a function of SM couplings
 - Treated as free parameter (test possible BSM contributions)

- Total width Γ_{H} two kind of assumptions
 - Only SM particles contribute to $\Gamma_{\mathsf{H}}(\Gamma_{\mathsf{i}})$
 - Measure ratio of couplings λ

Produc	ction	modes	
$rac{\sigma_{ m ggH}}{\sigma_{ m ggH}^{ m SM}}$	=	$\begin{cases} \kappa_{\rm g}^2(\kappa_{\rm b},\kappa_{\rm t},m_{\rm H}) \\ \kappa_{\rm g}^2 \end{cases}$	(3)
$\frac{\sigma_{\rm VBF}}{\sigma_{\rm VBF}^{\rm SM}}$	=	$\kappa_{\rm VBF}^2(\kappa_{\rm W},\kappa_{\rm Z},m_{\rm H})$	(4)
$\frac{\sigma_{\rm WH}}{\sigma_{\rm WH}^{\rm SM}}$	=	κ_W^2	(5)
$rac{\sigma_{ m ZH}}{\sigma_{ m ZH}^{ m SM}}$	=	κ_Z^2	(6)
$\frac{\sigma_{\rm t\bar{t}H}}{\sigma_{\rm t\bar{t}H}^{\rm SM}}$	=	κ_t^2	(7)

Detectable decay modes $\frac{\Gamma_{WW^{(*)}}}{r^{SM}} = \kappa_W^2$

$$\frac{\Gamma_{N}}{\Gamma_{WW}^{(*)}} = \kappa_{W}^{2}$$

$$\frac{\Gamma_{ZZ^{(*)}}}{\Gamma_{ZZ^{(*)}}^{SM}} = \kappa_{Z}^{2}$$

$$\frac{\Gamma_{b\overline{b}}}{\Gamma_{b\overline{b}}^{SM}} = \kappa_{b}^{2}$$

$$\frac{\Gamma_{\tau^{-}\tau^{+}}}{\Gamma_{\tau^{-}\tau^{+}}^{SM}} = \kappa_{\tau}^{2}$$

$$\frac{\kappa_{\gamma\gamma}^{2} = (1.6 \kappa_{W}^{2} + 0.07 \kappa_{\tau}^{2} - 0.67 \kappa_{W} \kappa_{t})}{\Gamma_{\gamma\gamma}^{SM}}$$

$$\frac{\Gamma_{\gamma\gamma}}{\Gamma_{\gamma\gamma}^{SM}} = \left\{ \kappa_{\gamma}^{2} (\kappa_{b}, \kappa_{t}, \kappa_{\tau}, \kappa_{W}, m_{H}) \\ \kappa_{\gamma}^{2} \right\}$$

LHC-XS wg

Inputs to the Fit

• Input to coupling fit: event yields per category k (list of channels/category used in backup)

- $N^k = n^k_{\text{signal}} + n^k_{\text{background}}$

• Signal scaling factors per Production *i* and Decay *f*

$$n_{\text{signal}}^{k} = \left(\sum_{i} \mu_{i} \sigma_{i,\text{SM}} \times A_{i}^{k} \times \varepsilon_{if}^{k}\right) \times \mu_{f} \times B_{f,\text{SM}} \times \mathcal{L}^{k}$$

LHC Coupling Fit: statistical approach

• Use profile likelihood ratio: $q(a) = -2 \ln \frac{\mathcal{L}(\text{obs} | s(a) + b, \hat{\theta}_a)}{\mathcal{L}(\text{obs} | s(\hat{a}) + b, \hat{\theta})}$.

- α Parameter(s) of Interest: Signal Strength, Coupl. scale factor, Mass, ...
- *θ* Nuisance parameter(s): Systematics, ...
- CL intervals: Asymptotic approximation:
 - 1D: 68% $q(\alpha) = 1$ 95% $q(\alpha) = 3.84$
 - 2D: 68% $q(a_i, a_j) = 2.3$ 95% $q(a_i, a_j) = 6$
 - Cross checked with "pseudo-experiments"

$$q_{\mu} = -2\Delta \ln \mathcal{L} = -2 \ln \frac{\mathcal{L}(\text{data} \mid \mu, \hat{\theta}_{\mu})}{\mathcal{L}(\text{data} \mid \hat{\mu}, \hat{\theta})}$$

Evidence for different Production modes

Test of W/Z coupling: $\lambda_{W/Z}$

- Ratio is independent of assumptions on $\Gamma_{\rm H}$
- Tested under different assumptions
 - More model independent: using only "untagged" WW* and ZZ* channels
 - CMS: $\lambda_{w/z}$ [0.60,1.40] at 95% CL
 - ATLAS: $\lambda_{w/z}$ = (0.81 \pm 0.16) at 68% CL
 - Assuming SM content in γγ loop and using VBF+VH production
 - ATLAS: $\lambda_{w/z}$ [0.61,1.04] at 68% CL
 - CMS: $\lambda_{w/z}$ [0.62,1.19] at 95% CL

Compatible with SM prediction: Accuracy ~20%

6 parameters fits: $\kappa_V \kappa_b \kappa_\tau \kappa_g \kappa_v \kappa_t$

• 6 Parameters Fit: $\kappa_V \kappa_b \kappa_\tau \kappa_g \kappa_\gamma \kappa_t \rightarrow Assumptions \Gamma_{BSM} = 0, \kappa_W = \kappa_Z = \kappa_V$ Compatible with SM: Accuracy 20-100%

Higgs boson production at LHC

- Main production mode: ggH
- Access to top (direct and Loop), W and Z couplings via production cross section

Higgs boson production at LHC

8 TeV

М _н (125 GeV)	σ(fb)	δ(th) _{τοτ}	$\delta(th)_{QCD-Scale}$	$\delta(th)_{PDF+\alpha s}$	δσ/δM(.5GeV)
ggH	19.5 x 10 ³	11%	8%	7%	0.8%
VBF	1.58 x 10 ³	3%	0.2%	3%	0.4%
WH	697	4%	0.5%	4%	1.3%
ZH	394	5%	1.5%	4%	1.3%
ttH	130	11%	7%	8%	1.9%

- Cross-sections are LARGE: LHC is the first Higgs Factory \rightarrow Produced H~600k/Exp.
- Theory systematics more relevant for ggH and ttH Mass dependency very weak

Higgs boson decay at LHC

- Experimentally accessible:
 - bb, ττ, WW*, ZZ*, γγ, Zγ, μμ
- Γ_H(125) ~4 MeV NO direct measure at LHC

INIH-IZ2 OCA	Μ	_L =12!	5 Ge'	V
--------------	---	-------------------	-------	---

Process	Branching ratio	Uncer	tainty
$\textbf{\textit{H}} \rightarrow \textbf{\textit{bb}}$	5.77 x 10-1	+3.2%	-3.3%
$H \rightarrow \tau \tau$	6.32 x 10-2	+5.7%	-5.7%
$H ightarrow \mu\mu$	2.20 x 10-4	+6.0%	-5.9%
H ightarrow cc	2.91 x 10-2	+12.2%	-12.2%
$H \rightarrow gg$	8.57 x 10-2	+10.2%	-10.0%
$H \rightarrow \gamma \gamma$	2.28 x 10-3	+5.0%	-4.9%
$H \rightarrow Z\gamma$	1.54 x 10-3	+9.0%	-8.8%
$H \rightarrow WW$	2.15 x 10-1	+4.3%	-4.2%
$H \rightarrow ZZ$	2.64 x 10-2	+4.3%	-4.2%
Г _Н [GeV]	4.07 x 10-3	+4.0%	-3.9%

Mass dependency:

- δ BR(bb)/0.5 GeV \rightarrow 1%
- $\delta BR(WW^*)/0.5 \text{ GeV} \rightarrow 4\%$
- δBR(ZZ*)/0.5 GeV → 4%

The Couplings roadmap

Test Higgs boson couplings depending on available L: - Total signal yield μ : tested at 20% (κ tested at 10%) Today Couplings to Fermions and Vector Bosons 20-30% 7+8 TeV ~ 30 fb⁻¹ Loop couplings tested at 40% *Custodial symmetry W/Z Couplings tested at 30% Test Down vs Up fermion couplings Test Lepton vs Quark fermion couplings - Top Yukawa direct measurement ttH: κ_t - Test second generation fermion couplings: κ_{μ} **I HC** Upgrade - Higgs self-couplings couplings HHH: $\kappa_{\rm H}$ 14 TeV ~ 3000 fb⁻¹

*results in backup slides

High Luminosity LHC: The timeline

High Luminosity LHC: the detectors upgrades

- Both detectors are planning important upgrades to stand the harsher running conditions at HL-LHC: pile-up, rates, radiation damage
 - Pile-up ~ 4-5 times more pile-up then today
- Plan: keep detector performance for main physics objects at the same level as we have today
 - Improved trigger system
 - New tracking systems
 - Improved forward detectors

— ...

• **CRUCIAL** to profit of L increase

Signal σ and Yields: HL/HE

Process	3000 fb ⁻¹ 14 TeV	300 fb ⁻¹ 33 TeV
ggH→γγ	350k	123k
ggH→4ℓ	19k	6.7k
ttH→γγ	42k	30k
ttH→4ℓ /μμ	0.2k/0.4k	0.16k/0.3k
ggH→HH→bbүү	270	160

LHC upgrades give access to <u>rare decays</u> Better signal Yields at HL-LHC BUT Pile-up and S/B better at HE-LHC

CMS: Couplings f at HL-LHC

Goal: ultimate precision of ~5% or better

CMS Projection

Assumption NO invisible/undetectable contribution to $\Gamma_{\rm H}$:

- Scenario 1: system./Theory err. unchanged w.r.t. current analysis (also unchanged)
- Scenario 2: systematics scaled by 1/sqrt(L), theory errors scaled by 1/2
- γγ loop at 2-5% level
- down-type fermion couplings at 2-10% level
- ✓ direct top coupling at 7-10% level
- ✓ gg loop at 3-5% level

ATLAS: Coupling Ratios at HL-LHC

- Fit to coupling ratios:
 - No assumption BSM contributions to $\Gamma_{\rm H}$
 - Some theory systematics cancels in the ratios
- Loop-induced Couplings γγ and gg treated as independent parameter
 - $\kappa_{\gamma}/\kappa_{z}$ tested at 2%
 - gg loop (BSM) κ_t/κ_g at 7-12%
 - 2^{nd} generation ferm. κ_u/κ_z at 8%

HL-LHC outlook

LHC 300 fb⁻¹ at 14 TeV:

- Mass: <100 MeV (statistical)
- Coupling κ rel. precision*
 - Z, W, b, τ 10-15%
 - t, μ 3-2 σ observation
 - $\gamma\gamma$ and gg 5-11%

HL-LHC 3000 fb⁻¹ at 14 TeV:

Mass: << 50 MeV (statistical)

- Couplings κ rel. precision*
 - Z, W, b, τ , t, μ 2-10%
 - γγ and gg 2-5%

*Assuming sizeable (1/2) reduction of theory errors

- "QCD scale" go to Higher order QCD computation ?
- gg "PDF" from LHC data ?

Mass Measurement:

Several exp./theory challenges to reach 50 MeV ($e/\gamma/\mu$ calibration E-scale, Interference, FSR, ...)