EPS 2013 Stockholm

Theory Predictions for Higgs Boson Production

Franz Herzog (CERN)

With the 14 TeV LHC we are about to enter a new era of Higgs precision physics!

We should therefore revise our best theoretical predictions and their uncertainties.

Here focus on Higgs production in gluon-fusion:

- yields the largest Higgs cross section
- is one of the worst perturbative observables that is is known in Collider Physics.

Higgs boson cross section: The Gluon Fusion channel

Perturbative Corrections:

- NLO QCD corrections known exactly (with top-bottom interference)
- NNLO QCD corrections (in HQET)
- subleading terms in the m H/(2m t) expansion
- FW corrections known
- mixed QCD EW corrections

Resummation:

- Soft gluon NNLL, Pi^2
- Transverse momentum resummation to NNLL (now also with exact top and bottom dependence)
- Jet transverse momentum and cone size R to NNLL
- Approximate N3LO

Tools:

 mc@nlo, powheg, higlu, HNNLO, Hres, Hqt, Fehip, FehiPro (code was never published), Hpro, Ihixs, Ehixs (next slide)

A soon to appear C++ tool for simulating fully differential Higgs production at NNLO!

Great Increase of speed for NNLO real emissions:

- Integrand reduction with symmetric Groebner basis
- Non-linear mappings on phase space variables for efficient factorisation of all infra-red singularities

Includes:

- All known fixed order corrections
- Anomalous standard model couplings
- All important decays
- Also bb → H fully differential at NNLO

NNLO Theory Uncertainty

IHIXS@8TeV:[Anastasiou, Buehler, FH, Lazopoulos] (all known perturb. corr.)

De Florian & Grazzini @ 8TeV: (all known pert. Corr. + NNLL soft resummation)

$m_H({ m GeV})$	MSTW08 $\sigma(pb)$	$\%\delta_{PDF}$	$\%\delta_{\mu_F}$
125	20.69	$^{+7.79}_{-7.53}$	+8.37 -9.26

$m_H \text{ (GeV)}$	σ (pb)	scale(%)	$PDF+\alpha_S(\%)$
125.0	19.31	+7.2 -7.8	+7.5 -6.9

Central scale $\mu = \mu_R = \mu_F = \frac{m_H}{2}$

Scale variation $\frac{m_H}{4} \le \mu \le m_H$

The pdf uncertainty is computed at 90%CL.

Central scale $\mu = \mu_R = \mu_F = m_H$

Scale variation $\frac{m_H}{2} \le \mu_R, \mu_F \le 2m_H$

The pdf uncertainty is computed at 68%CL. acc. To PDF4LHC

Note: dominant uncertainty is from μ_R variation

How can one reduce perturbative uncertainties?

Resummation may reduce scale uncertainties:

Treshhold resummation [Grazzini's Online calculator]

Treshhold with SCET and π^2 – resummation [0809.4283]

Another way is to compute the next order:

$$\sigma_{PP\to H+X}^{\rm N3LO} = \alpha_s(\mu_R)^5 \left[K + f(\sigma_{PP\to H+X}^{\rm lower\ orders}, \log \mu_R) \right]$$

The ultimate precision at N3LO

Order	Cross section [pb]	$\sigma/\sigma_{ m NNLO}$	$\sigma/\sigma_{ m LO}$
LO	$10.31 \ ^{+26.9\%}_{-16.6\%}$	0.51	1.00
NLO	$17.41~^{+20.8\%}_{-12.7\%}$	0.86	1.69
NNLO	$20.27~^{+8.3\%}_{-7.1\%}$	1.00	1.97
$N^3LO~(K=0)$	$18.53~^{+1.2\%}_{-7.9\%}$	0.91	1.80
$N^3LO~(K=5)$	$19.23~^{+0.3\%}_{-5.1\%}$	0.95	1.87
$N^{3}LO (K=10)$	$19.92~^{+0.0\%}_{-2.6\%}$	0.98	1.93
$N^{3}LO~(K=15)$	$20.62~^{+0.4\%}_{-2.2\%}$	1.02	2.00
$N^{3}LO \ (K=20)$	$21.31 \ ^{+2.0\%}_{-3.1\%}$	1.05	2.07
$N^{3}LO \ (K=30)$	$22.70 \ ^{+6.0\%}_{-4.9\%}$	1.12	2.20
$N^{3}LO (K=40)$	$24.09 \ ^{+9.6\%}_{-6.5\%}$	1.19	2.34

Towards exact N3LO

- No calculation has been done before at this order for a hadron collider
- Challenges our current methodology for higher order calculations
- Problem of infra-red divergences even more pronounced! Most singular limits unknown! IR poles up to $\frac{1}{\epsilon^6}$.
- Nevertheless an analytical evaluation should be feasible, since partonic cross depends only on a single parameter

$$z = \frac{m_H^2}{\hat{s}}$$

Status of N3LO

VVV:

• Known [Baikov, Chetyrkin, Smirnov, Smirnov, Steinhauser; Gehrmann, Glover, Huber, Ikizlerli, Studerus]

RVV: in progress

- 2-loop amplitude known up to O(ε) [...]
- Further singularities in phase space integral

(RV)^2: in progress

1-loop amplitude known to all orders in a

RRV: in progress

• Not even 1-loop known to all orders in ε

RRR:

• Now know first two terms in soft expansion [Anasatsaiou, Duhr, Dulat, Mistlberger]

Collinear/UV counterterms:

• known [Pak, Rogal, Steinhauser; Anastasiou, Buehler, Duhr, FH; Höschele, Hoff, Pak, Steinhauser, Ueda; Buehler, Lazopoulos]

+ UV and collinear counter terms

Growth of Complexity of real emissions

LO	999998	1 diagram	1 integral
NLO	\$\$\\$	10 diagrams	1 integral
NNLO	\$\&	381 diagrams	18 integrals
N3LO	3000000 S	26565 diagrams	~200 integrals

[Graphics by Claude Duhr]

Conclusions

- A new challenge for theory is to match the next generation of Higgs precision data expected from the LHC 14 and beyond!
- Theoretical predictions for Higgs production are in good shape, but higher precision is now required!
- N3LO approx. is pointing towards a possible under estimation of the current uncertainties.
- New tools for the evaluation of the exact N3LO correction are emerging
- The N3LO frontier may be reached in the coming year!

Backup

Reverse Unitarity

•A technique developed for inclusive Higgs @ NNLO:

$$\delta_{+}(q^{2}) \to \left(\frac{1}{q^{2}}\right)_{c} \equiv \frac{1}{2\pi i} \operatorname{Disc} \frac{1}{q^{2}} = \frac{1}{2\pi i} \left(\frac{1}{q^{2} + i0} - \frac{1}{q^{2} - i0}\right)$$

•Allows to establish differentiation properties:

$$\frac{\partial}{\partial q_{\mu}} \left[\left(\frac{1}{q^2} \right)_c \right]^{\nu} = -\nu \left[\left(\frac{1}{q^2} \right)_c \right]^{\nu+1} 2q^{\mu} \qquad \left[\left(\frac{1}{q^2} \right)_c \right]^{-\nu} \to 0, \quad \forall \nu = 0, 1, 2, \dots$$

$$\left[\left(\frac{1}{q^2} \right)_c \right]^{-\nu} \to 0, \quad \forall \ \nu = 0, 1, 2, \dots$$

•Hence one can use the usual IBP relations originally developed for loop computations to find a set of independent master integrals

Differential equations

•IBP relations allow to set up a system of differential equations for the masters:

$$\frac{\partial}{\partial z} \mathbf{F}_i(z, \epsilon) = \sum_j c_{ij}(z, \epsilon) \mathbf{F}_j(z, \epsilon)$$

- •Can solve masters, after diagonalisation, needing just the soft limit $z\mapsto 1$ of each master
- •To get the higher epsilon terms we had recompute the NNLO master soft integrals to higher orders and we noticed something striking. There appeared to be only 2 independent soft master integrals.

Soft master integrals for NNLO

•We were able to show that all but one master integral were directly proportional to the soft phase space volume

$$\mathbf{S}_{1}(z,\epsilon) = \mathbf{S}_{7}(z,\epsilon) = \mathbf{S}_{11a}(z,\epsilon) = 1,$$

$$\mathbf{S}_{2}(z,\epsilon) = \frac{2(3-4\epsilon)}{(1-2\epsilon)(1-z)^{2}},$$

$$\mathbf{S}_{3}(z,\epsilon) = \mathbf{S}_{8}(z,\epsilon) = \mathbf{S}_{9}(z,\epsilon) = \mathbf{S}_{10}(z,\epsilon) = 2\frac{(1-2\epsilon)(3-4\epsilon)}{\epsilon^{2}(1-z)^{2}},$$

$$\mathbf{S}_{4}(z,\epsilon) = \mathbf{S}_{5}(z,\epsilon) = -2\frac{(1-2\epsilon)(3-4\epsilon)(1-4\epsilon)}{\epsilon^{3}(1-z)^{4}},$$

$$\mathbf{S}_{6}(z,\epsilon) = -8\frac{(1-2\epsilon)(3-4\epsilon)(1-4\epsilon)}{\epsilon^{3}(1-z)^{4}},$$

$$\mathbf{S}_{12}(z,\epsilon) = \frac{1}{2},$$

$$\mathbf{S}_{13}(z,\epsilon) = -\frac{3-4\epsilon}{(1-2\epsilon)(1-z)},$$

$$\mathbf{S}_{14}(z,\epsilon) = \frac{3-4\epsilon}{\epsilon(1-z)},$$

$$\mathbf{S}_{15}(z,\epsilon) = \frac{(1-2\epsilon)(3-4\epsilon)}{\epsilon^{2}(1-z)^{2}},$$

$$\mathbf{S}_{16}(z,\epsilon) = \frac{(1-2\epsilon)(3-4\epsilon)(1-4\epsilon)}{\epsilon^{3}(1-z)^{3}},$$

$$\mathbf{S}_{17}(z,\epsilon) = -2\frac{(1-2\epsilon)(3-4\epsilon)(1-4\epsilon)}{\epsilon^{3}(1-z)^{4}},$$

$$\mathbf{S}_{18}(z,\epsilon) = -4 \frac{(1-2\epsilon)(3-4\epsilon)(1-4\epsilon)}{\epsilon^3 (1-z)^4} {}_{3}F_{2}(1,1,-\epsilon;1-\epsilon,1-2\epsilon;1)$$

The master integrals needed for the soft are only a tiny subset of the full set of masters!

A new technique for soft integrals

•Expand propagators around z=1:

$$\frac{1}{[p_{3...N} - p_{12}]^2 - z p_{3...N}^2} = \sum_{k=0}^{\infty} \bar{z}^k \frac{(-p_{3...N}^2)^k}{[p_{12} \cdot (p_{12} - 2p_{3...N})]^{k+1}}$$

- For the RRR found only 10 master integrals!
- •Even better can expand cross section around z=1 to any order using just these 10 masters!!

$$\Phi_3(\bar{z};\epsilon) = \bar{z}^{3-4\epsilon} \left[\begin{array}{c} \\ \\ \\ \end{array} \right] - \bar{z} \begin{array}{c} \\ \\ \end{array} + \bar{z}^2 \begin{array}{c} \\ \\ \end{array} + \mathcal{O}(\bar{z}^3)$$

$$= -\frac{1-\epsilon}{2} \qquad ,$$

$$= \frac{(1-\epsilon)(2-\epsilon)(3-2\epsilon)}{4(5-4\epsilon)} \qquad (2-\epsilon)(3-2\epsilon)$$