New results on the proton spin-dependent structure function g_1^p at COMPASS with $E = 200$ GeV

Elena Zemlyanichkina

on behalf of the COMPASS collaboration

Joint Institute for Nuclear Research
Dubna, Russia
COnmon Muon and Proton Apparatus for Structure and Spectroscopy

NA58 at the CERN SPS

~ 250 physicists

~ 30 institutes

<table>
<thead>
<tr>
<th>Muon programm</th>
<th>Hadron programm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spin dependent structure function g_1</td>
<td>Primakoff effect, π and K polarisabilities</td>
</tr>
<tr>
<td>Gluon polarisation in the nucleon</td>
<td>Exotic states, glueballs</td>
</tr>
<tr>
<td>Quark polarisation distributions</td>
<td>(Double) charmed barions</td>
</tr>
<tr>
<td>Transversity</td>
<td>Multiquark states</td>
</tr>
<tr>
<td>Vector meson production</td>
<td></td>
</tr>
<tr>
<td>Λ polarisation</td>
<td></td>
</tr>
</tbody>
</table>

Future: Drell-Yan on a polarised target and DVCS
How is the nucleon spin distributed among its constituents?

Nucleon spin

\[
\frac{1}{2} = \frac{1}{2} \Delta \Sigma + \Delta G + L_{q,g}
\]

quark gluon orbital momentum

The direct evidence for existence of quarks inside the nucleon is provided by DIS. The idea is to accelerate leptons to very high energies, then allow them to interact with a stationary nucleon, and investigate what happens.

Inclusive Deep Inelastic Scattering

\[
Q^2 = -q^2 = -(k - k')^2 \quad \text{virtuality of the photon}
\]

\[
x \equiv x_{Bj} = \frac{Q^2}{2M_\nu}
\]

Bjorken scaling variable
Absorption of polarised photons (QPM):

\[q(x) = q^+(x) + q^-(x) \]
\[\Delta q(x) = q^+(x) - q^-(x) \]

\[q^-(x) = \sigma_3/2 \]
\[q^+(x) = \sigma_1/2 \]

\[A_1 = \frac{\sigma_1/2 - \sigma_3/2}{\sigma_1/2 + \sigma_3/2} \approx \frac{\sum_q e_q^2 \Delta q}{\sum_q e_q^2 q} = \frac{g_1}{F_1} \]

Spin-dependent structure function:

\[g_1 = \frac{1}{2} \sum_q e_q^2 \Delta q = A_1 \frac{F_2}{2x(1 + R)} \approx \frac{A_{||}}{D} \frac{F_2}{2x(1 + R)} \]

Inclusive cross-section:

\[\frac{d^2\sigma}{dx dQ^2} = c_1 F_1(x, Q^2) + c_2 F_2(x, Q^2) + c_3 g_1(x, Q^2) + c_4 g_2(x, Q^2) \]
COMPASS spectrometer

- Polarised μ^+ beam from SPS
 - $2 \cdot 10^8 (1 \cdot 10^8)$ μ per spill of ~ 10 s
 - 160 GeV (200 GeV)
 - $P_\mu(E_\mu) = 76\text{--}80\%$

- Spectrometer:
 - Two stages along 60 m
 - Large acceptance 180 mrad

- Target, 1.2 m long:
 - LiD : $f \sim 40 \%$, $P_T \sim 50\%$
 - NH$_3$: $f \sim 16 \%$, $P_T \sim 85\%$

Fixed polarised target in a 2.5 T solenoid field
New measurement @ 200 GeV

2011 data taking:

- 78 \cdot 10^6 events
- \(E_{beam} = 200 \text{ GeV} \)
- \(Q^2 > 1 \text{ (GeV/c)}^2 \) and \(0.1 < y < 0.9 \)
- \(0.025 < x < 0.7 \)
- \(\text{NH}_3: P_T \approx 85\% \)

2007 and 2011 at slightly different \(Q^2 \)
Systematic uncertainties

Two kind of contributions:

\[
A_1^\gamma = \frac{1}{fDP_B P_T} A^{raw} - \left(A_1^{RC} + \mathcal{O}(\frac{x}{Q} A_2) + \mathcal{O}(A_{\text{false}}) \right)
\]

<table>
<thead>
<tr>
<th>Multiplicative variables</th>
<th>Error, ΔA_1^{mult}</th>
<th>Additive variables</th>
<th>Error, ΔA_1^{add}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beam polarisation</td>
<td>dP_B/P_B</td>
<td>5%</td>
<td>Transverse asymmetry</td>
</tr>
<tr>
<td>Target polarisation</td>
<td>dP_T/P_T</td>
<td>5%</td>
<td>Rad. corrections</td>
</tr>
<tr>
<td>Depolarisation factor</td>
<td>dD/D</td>
<td>2 – 3%</td>
<td>False asymmetry</td>
</tr>
<tr>
<td>Dilution factor</td>
<td>df/f</td>
<td>2%</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>$\Delta A_1^{\text{mult}} \approx 0.08 \cdot A_1$</td>
<td></td>
</tr>
</tbody>
</table>
COMPASS proton results at 200 GeV and 160 GeV

\[g_1(x) = \frac{F_2}{2x(1 + R)} A_1 \]

- SMC parametrisation of \(F_2 \)
 - SMC [PRD 58 (1998) 112001]
- \(R = \frac{\sigma_L}{\sigma_T} \)
 - E143 [PLB 452 (1999) 194]
- Statistical errors (2007 and 2011)
 - 2-3 times smaller than 2 years of SMC
- Lower \(x \) value reached
Asymmetry A_1^p: Q^2 evolution

$\langle x_B \rangle = 0.004$

$\langle x_B \rangle = 0.005$

$\langle x_B \rangle = 0.006$

$\langle x_B \rangle = 0.007$

$\langle x_B \rangle = 0.009$

$\langle x_B \rangle = 0.015$

$\langle x_B \rangle = 0.025$

$\langle x_B \rangle = 0.035$

$\langle x_B \rangle = 0.049$

$\langle x_B \rangle = 0.078$

$\langle x_B \rangle = 0.124$

$\langle x_B \rangle = 0.174$

$\langle x_B \rangle = 0.224$

$\langle x_B \rangle = 0.295$

$\langle x_B \rangle = 0.411$

$\langle x_B \rangle = 0.573$

\rightarrow No significant dependence on Q^2 observed
Indirect measurement of ΔG, g_1^p: Q^2 evolution

World data $g_1^p(x)$ as a function of Q^2 in bins of x

COMPASS 160 GeV
COMPASS 200 GeV
New data point at very low x

New inputs for global fits and indirect ΔG extraction

LSS’05 fit at next-to leading order
Conclusion

- New measurement of $g_1^p@200$ GeV (2011 data)
 - Extension of the measured region to lower x and larger Q^2
 - New input and constrains
Conclusion

- New measurement of $g_1^p@200$ GeV (2011 data)
 - Extension of the measured region to lower x and larger Q^2
 - New input and constrains

Outlook

- Update of the Bjorken Sum Rules
- Indirect measurement of ΔG via g_1 COMPASS global fit
- Extraction of $A_{1,p}^{\pi^+}$, $A_{1,p}^{\pi^-}$, $A_{1,p}^{K^+}$, $A_{1,p}^{K^-}$
- Extraction of Δq per flavour
Conclusion

- New measurement of $g_1^p @200$ GeV (2011 data)
 - Extension of the measured region to lower x and larger Q^2
 - New input and constrains

Outlook

- Update of the Bjorken Sum Rules
- Indirect measurement of ΔG via g_1 COMPASS global fit
- Extraction of $A_{1,p}^{\pi^+}, A_{1,p}^{\pi^-}, A_{1,p}^{K^+}, A_{1,p}^{K^-}$
- Extraction of Δq per flavour

Thank You For Attention!
E.Zemlyanichkina (JINR, Dubna)