# First cosmological results from Planck

Cyrille Rosset - APC EPS 2013

First cosmological results from Planck - Cyrille Rosset

### Planck 2013 publications



First cosmological results from Planck - Cyrille Rosset

#### History of Universe





### The Planck challenge

- To perform the "ultimate" measurement of the Cosmic Microwave Background (CMB) temperature anisotropies, needed:
  - full sky coverage and angular resolution, to survey all scales at which the CMB primary anisotropies contain information (~5')
  - sensitivity, essentially limited by ability to remove the astrophysical foregrounds
    - enough sensitivity within large frequency range [30 GHz, I THz] (~CMB photon noise limited for ~I year in CMB primary window)
- Get the best performances possible on the polarization with the technology available
- ESA selection in 1996 (after ~ 3 year study)
- NB: with the Ariane 501 failure delaying us by several years (2003 
   2007) and WMAP then flying well before us, polarization measurements became more and more a major goal

#### The target at selection time



### Foregrounds







First cosmological results from Planck - Cyrille Rosset

### Performance goals

| Telescope                                                                                                                                                                | 1.5 m (proj. aperture) aplanatic; shared focal plane; system emissivity 1% |     |     |                                                           |     |     |      |     |      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|-----|-----|-----------------------------------------------------------|-----|-----|------|-----|------|
|                                                                                                                                                                          | Viewing direction offset 85° from spin axis; Field of View 8°              |     |     |                                                           |     |     |      |     |      |
| Instrument                                                                                                                                                               | LFI                                                                        |     |     | HFI                                                       |     |     |      |     |      |
| Center Freq. (GHz)                                                                                                                                                       | 30                                                                         | 44  | 70  | 100                                                       | 143 | 217 | 353  | 545 | 857  |
| Detector Technology                                                                                                                                                      | HEMT LNA arrays                                                            |     |     | Bolometer arrays                                          |     |     |      |     |      |
| Detector Temperature                                                                                                                                                     | ~20 K                                                                      |     |     | 0.1 K                                                     |     |     |      |     |      |
| <b>Cooling Requirements</b>                                                                                                                                              | H <sub>2</sub> sorption cooler                                             |     |     | H <sub>2</sub> sorption + 4 K J-T stage + Dilution cooler |     |     |      |     |      |
| Number of Unpol.                                                                                                                                                         | 0                                                                          | 0   | 0   | 0                                                         | 4   | 4   | 4    | 4   | 4    |
| Detectors                                                                                                                                                                |                                                                            |     |     |                                                           |     |     |      |     |      |
| Number of Linearly                                                                                                                                                       | 4                                                                          | 6   | 12  | 8                                                         | 8   | 8   | 8    | 0   | 0    |
| <b>Polarised Detectors</b>                                                                                                                                               |                                                                            |     |     |                                                           |     |     |      |     |      |
| Angular Resolution                                                                                                                                                       | 33                                                                         | 24  | 14  | 9.5                                                       | 7.1 | 5   | 5    | 5   | 5    |
| (FWHM, arcmin)                                                                                                                                                           |                                                                            |     |     |                                                           |     |     |      |     |      |
| Bandwidth (GHz)                                                                                                                                                          | 6                                                                          | 8.8 | 14  | 33                                                        | 47  | 72  | 116  | 180 | 283  |
| Average $\Delta T/T_{I}^{*}$ per                                                                                                                                         | 2.0                                                                        | 2.7 | 4.7 | 2.5                                                       | 2.2 | 4.8 | 14.7 | 147 | 6700 |
| pixel <sup>#</sup>                                                                                                                                                       |                                                                            |     |     |                                                           |     |     |      |     |      |
| Average $\Delta T/T_{U,O}^*$ per                                                                                                                                         | 2.8                                                                        | 3.9 | 6.7 | 4.0                                                       | 4.2 | 9.8 | 29.8 |     |      |
| pixel <sup>#</sup>                                                                                                                                                       |                                                                            |     |     |                                                           |     |     |      |     |      |
| <sup>*</sup> Sensitivity (1 $\sigma$ ) to intensity (Stokes D fluctuations observed on the sky, in thermodynamic temperature (x10 <sup>-6</sup> ) units, relative to the |                                                                            |     |     |                                                           |     |     |      |     |      |

Sensitivity (1σ) to intensity (Stokes I) fluctuations observed on the sky, in thermodynamic temperature (x10<sup>-6</sup>) units, relative to the average temperature of the CMB (2.73 K), achievable after two sky surveys (14 months).

<sup>4</sup> A pixel is a square whose side is the FWHM extent of the beam.

\* Sensitivity (1σ) to polarised intensity (Stokes U and Q) fluctuations observed on the sky, in thermodynamic temperature (x10<sup>-6</sup>) units, relative to the average temperature of the CMB (2.73 K), achievable after two sky surveys (14 months).

#### Planck breakthroughs

- Technological performance never achieved in space before :
  - sensitive and fast bolometers for HFI
    - NEP < 2.10<sup>-17</sup> W/Hz<sup>1/2</sup>, time constant ~ 5 ms (requires cooling at 100 mK)
    - low noise electronics : 6 nV/Hz<sup>1/2</sup>, from 10 mHz to 100 Hz
    - excellent temperature stability from 10 mHz to 100 Hz
      - < 10  $\mu$ K/Hz<sup>1/2</sup> for 4 K box
      - < 30  $\mu$ K/Hz<sup>1/2</sup> for 1.6 K filter plate
      - < 20 nK//Hz<sup>1/2</sup> for 100 mK detector plate
  - low noise HEMT amplifier for LFI

#### Planck breakthroughs

- Low emissivity, very low side lobes telescope
- minimum warm surface in front of detectors
- complex cryogenic cooling chain : 50 K (passive) + 20K, 4K, 0.1K active coolers
  - 20K for LFI
  - 4K, I.6K and I00mK for HFI
  - Thermal architecture optimised to damp thermal fluctuations
- Integration of 3 complex chains electronic, optics, cryogenics

#### Planck satellite



#### High Frequency Instrument



#### Low Frequency Instrument



#### Launch on 14th May 2009



# Cooling



#### Temperature stability



First cosmological results from Planck - Cyrille Rosset

### Short Log book

- Start of survey on August 13th 2009, instruments very stable
- No major problem till the end of life of HFI (January 2012)
- Expected sensitivies achieved in flight: HFI reaches or exceeds its goals
- June 2010: first full sky maps obtained with 10 months of data. Planck early results in January 2011
- November 2010: nominal mission completed (15.5 months), the sky has been seen twice by all detectors
  - public data delivery in 21st March 2012 with 28 "Planck early results" papers
- January 12th 2012 : all HFI data acquired. 5 surveys (twice the nominal duration). Next data delivery in mid-2014.

First cosmological results from Planck - Cyrille Rosset

# Scanning strategy



#### Data processing

#### Planck HFI data flow chart



#### HFI raw detector signal

HFI Core Team: HFI Data Processing



#### 3 min of demodulated raw data

First cosmological results from Planck - Cyrille Rosset

#### Cleaning data

# More glitches than expected : use of redundancy to remove them



#### From $\mu V$ to fW (calibration)

### Sky as seen by Planck



#### Foreground components



#### Low frequency emission



#### Reconstructed CO map



#### Dust emission



#### Sunyaev-Zeldovich effect



- Inverse Compton interaction between CMB photons and hot gas in clusters (~millions of K)
- Can be detected at high redshift
- Allow estimation of mass of clusters
- Gas fraction  $(M_{gaz}/M_{tot})$  : linked to the universal ratio  $\Omega_b/\Omega_m$





#### SZ sources



#### First cosmological results from Planck - Cyrille Rosset

#### Cleaning the background



First cosmological results from Planck - Cyrille Rosset

#### Cleaning the background



Contribution of each frequency channel on the final CMB map, depending on angular scale

#### Final CMB map from Planck





The Cosmic Microwave Background as seen by Planck and WMAP

WMAP

Planck

### Angular power spectrum of CMB



### Likelihood methodology

- Goal : provide P(Cl | Planck data)
- Hybrid multi-frequency likelihood approach:
  - Large scales (LL) : Gaussian likelihood on maps
  - Small scales (HL): Gaussian likelihood approximation on spectra
- Foregrounds residuals:
  - LL: parametrised at map level
  - HL: parametrised at the spectra level
- Validation:
  - Data selection
  - Null tests
  - Simulations

#### Data selection for HL

- Minimise foreground impacts
  - spatially
  - in multipole space
  - keeping low cosmic variance
- Galaxy : 353 GHz thresholding
- Sources : 100-353 GHz catalog
- Maps : keep easiest to model and most informative ones

| Multipole range | Mask                                            |
|-----------------|-------------------------------------------------|
| 50 - 1200       | CL49                                            |
| 50 - 2000       | CL31                                            |
| 500 - 2500      | CL31                                            |
| 500 - 2500      | CL31                                            |
| 50 - 2500       | CL31/49                                         |
|                 | 50 - 1200 $50 - 2000$ $500 - 2500$ $500 - 2500$ |





#### Planck power spectra



### Including foreground modelling



First cosmological results from Planck - Cyrille Rosset

#### EPS-HEP 2013

#### Data vs theory



#### Cosmological parameters

|                         | Pla      | Planck+lensing        |  |  |
|-------------------------|----------|-----------------------|--|--|
| Parameter               | Best fit | 68% limits            |  |  |
| $\Omega_{\rm b}h^2$     | 0.022242 | $0.02217 \pm 0.00033$ |  |  |
| $\Omega_{ m c}h^2$      | 0.11805  | $0.1186 \pm 0.0031$   |  |  |
| 100θ <sub>MC</sub>      | 1.04150  | $1.04141 \pm 0.00067$ |  |  |
| τ                       | 0.0949   | $0.089 \pm 0.032$     |  |  |
| $n_{\rm s}$             | 0.9675   | $0.9635 \pm 0.0094$   |  |  |
| $\ln(10^{10}A_{\rm s})$ | 3.098    | $3.085 \pm 0.057$     |  |  |
|                         |          |                       |  |  |

- Using only Planck
  - Sound horizon is measured by position of the peaks with a precision of 0.07 %
  - Exact scale invariance is excluded at ~4σ

## Comparison with other experiments



## Cosmological parameters with combined data



WMAP polarized data helps constraining reionization. Using other experiments high-I data makes little difference.

#### Cosmological parameters

|                         | Planck (CMB+lensing) |                       | Planck+WP+highL+BAO |                       |
|-------------------------|----------------------|-----------------------|---------------------|-----------------------|
| Parameter               | Best fit             | 68 % limits           | Best fit            | 68 % limits           |
| $\Omega_{ m b}h^2$      | 0.022242             | $0.02217 \pm 0.00033$ | 0.022161            | $0.02214 \pm 0.00024$ |
| $\Omega_{\rm c}h^2$     | 0.11805              | $0.1186 \pm 0.0031$   | 0.11889             | $0.1187 \pm 0.0017$   |
| $100\theta_{MC}$        | 1.04150              | $1.04141 \pm 0.00067$ | 1.04148             | $1.04147 \pm 0.00056$ |
| τ                       | 0.0949               | $0.089 \pm 0.032$     | 0.0952              | $0.092 \pm 0.013$     |
| $n_{\rm s}$             | 0.9675               | $0.9635 \pm 0.0094$   | 0.9611              | $0.9608 \pm 0.0054$   |
| $\ln(10^{10}A_{\rm s})$ | 3.098                | $3.085 \pm 0.057$     | 3.0973              | $3.091 \pm 0.025$     |

Using other data, the sound horizon is measured with 0.05% precision and the exact scale invariance is excluded at more than  $7\sigma$  (as predicted by inflaction models)

#### Constraint on primordial spectrum



#### Content of the Universe



First cosmological results from Planck - Cyrille Rosset

# Expansion rate (Hubble constant)

- H0 is modified :
  - $H0 = 67.3 \pm 1.2$
- Tension at 2.5σ between Planck and Cepheids or SNIa measurements



#### Gravitational lensing



Gravitation bends the path of light through matter between last scattering surface and us. This lensing effect distorts the CMB map.

First cosmological results from Planck - Cyrille Rosset

#### Lensing simulation

Map before gravitational lensing



#### Lensing simulation

Map after gravitational lensing



#### Reconstructed mass map

 Distribution of matter (dark + baryon) reconstructed from gravitational lensing effect



#### North galactic hemisphere

First cosmological results from Flanck - Cyrille Rosser



South galactic hemisphere

EFS-MEF ZUIS

#### Power spectrum of lensing potential



### The black line is the prediction using cosmological parameters from CMB alone

First cosmological results from Planck - Cyrille Rosset

#### Correlation with distant galaxies



Arrows show the lensing distortion. From left to right : stacking on maximum of CIB, on minimum and random stacking.

#### Extension of the model

- Test extension by adding one parameter at a time
  - Spatial curvature
  - Neutrinos properties (total mass, number of effective neutrinos)
  - Curvature of the primordial spectral index
  - Primordial tensor fluctuations (gravitational waves)
- No detection of any of these

#### Grid of models



#### Constraints on neutrinos



- Planck constrains neutrinos mass through their effect via lensing
- Removing this constraint weakens the limit:
  - $\Sigma m_v < 0.23 \text{ eV}$
  - becomes  $\Sigma m_v < 1.08 \text{ eV}$

#### Number of neutrinos



- No evidence for additional neutrino-like relativistic particle beyonf the three families of neutrinos of the standard model
- Neff =  $3.3 \pm 0.27$
- Note:
  - H0 pushes Neff high

#### Number of neutrinos



#### Constraints on inflation



 Exponential potential, monomial potential of degree n>2, simplest hybrid model (SB SUSY) do not fit well the data

First cosmological results from Planck - Cyrille Rosset

#### Large scale anomaly



 The first 30 modes measured are lower than expected from the model

• Probability of 1% to happen...

#### Large scale anomaly



#### Large scale anomaly



#### Aberration

- Optical effect due to our movement with respect to the CMB
- Induces distortion of the measured CMB map (exagerated on the plot beside):
  - spots are smaller in direction of earth motion
  - dipolar amplitude modulation
- Can measure our speed wrt CMB independently of the dipole (l=1 term in power spectrum)
- v = 384 ± 78 (stat) ± 115 (syst) km.s<sup>-1</sup>
- $(v_dipole = 368 \pm 2 \text{ km.s}^{-1})$



EPS-HEP 2013

#### Conclusion

- Planck instruments and scanning strategy allows wide range of consistency tests
- Gives confidence in the robustness of the measurements
- Excellent agreement of T power spectrum with ACDM and simplest inflationary models
- Improved precision on cosmological parameters:
  - H0 value slightly shifted, increase of  $\Omega$ m and decrease of  $\Omega\Lambda$
  - No evidence of additional family of neutrinos: Neff =  $3.3 \pm 0.27$
  - Limits on total mass of neutrinos:  $\Sigma m_v < 0.23 \text{ eV}$
  - No evidence for running spectral index
  - No detection of non-gaussianity, but stricter constraints
- Exponential potential, monomial potential of degree n>2, simplest hybrid model (SB SUSY) do not fit well the data
- Next data release (mid-2014) will include improvements in the analysis (better understanding of the instruments) and polarization

#### Polarization spectra



#### Polarization stacking

