

Properties of b-hadrons with ATLAS: B_s^0 rare decays and Λ_b^0 decay properties

John Baines

for the ATLAS Collaboration

Overview

- $B_s^0 \rightarrow \mu^+ \mu^-$ Branching Ratio
 - Update with full 2011 dataset
- Λ_b^o mass and lifetime

• Parity violation asymmetry parameter α_b and helicity amplitudes in $\Lambda_b^o \to \Lambda^0 \, J/\psi$

See also other B-physics talks in this conference:

- QCD session: Review of ATLAS Heavy-Quark and Quarkonium results: Miriam Watson
- This session: Studies of rare and suppressed processes in B mesons decays and of mixing/CP violation in the Bs system with the ATLAS detector: Jochen Schieck

ATLAS Detector & B-Physics Triggers

Precision Muon Detectors: $|\eta| < 2.7$:

• Resolution \sim 40 μ m

Inner Detector: $|\eta| < 2.5$

• d_0 resolution ~10 μm

Combined tracks (ID+Muon):

• $\sigma(m_{J/\psi}) = 60 \text{ MeV}$

B-Physics Triggers:

- First Level Trigger (L1):
 - Single muon & Dimuon Triggers
 - Thresholds 4 − 40 GeV p_T
- High Level Trigger (L2&L3):
 - Single muon & dimuon triggers
 - B-physics triggers:
 - Muons from common vertex
 - Opposite charge (except some control triggers) 10³
 - Loose mass cuts:

J/ψ: 2.5 < M(μμ) < 4.3 GeV B: 4.0 < M(μμ) < 8.5 GeV

$B_s^0 \rightarrow \mu^+ \mu^-$ Branching Ratio

ATLAS-CONF-2013-076

- Strongly suppressed in SM¹: BR= $(3.23\pm0.27)\times10^{-9}$
- Can be enhanced by new physics
- First measurement made by LHCb²: BR= $(3.2^{+1.5}_{-1.2}) \times 10^{-9}$
- Previous ATLAS 3 limit used half 2011 data (2.4 fb $^{-1}$).

Including improved event reconstruction & analysis improvements

 $\# B_s^0 \rightarrow \mu^+ \mu^-$ observed in

data after S.B. subtraction

- Blind analysis Blinded Region: 5066-5666 MeV
- BR measured w.r.t. reference channel:

$$\mathcal{B}(B_s^0 \to \mu^+ \mu^-) = \mathcal{B}(B^\pm \to J/\psi K^\pm \to \mu^+ \mu^- K^\pm) \times \frac{f_u}{f_s} \times \frac{N_{\mu^+ \mu^-}}{N_{J/\psi K^\pm}} \times R_{Ae}$$
PDG value

LHCb⁴ measurement

$$R_{A\epsilon} = \frac{A_{J/\psi K^{\pm}}}{A_{\mu^{+}\mu^{-}}} \frac{\epsilon_{J/\psi K^{\pm}}}{\epsilon_{\mu^{+}\mu^{-}}}$$

Acceptance × Efficiency Ratio from MC Reference Channel Yield from Data

1: Buras et. al. Eur. Phys. J C72 (2012) 2172 2: Phys. Rev. Lett. 110 (2013) 021810

3: Phys. Lett. **B713** (2012) 387 4: JHEP **1304** (2013) 001

$B_s^0 \rightarrow \mu^+ \mu^-$ Branching Ratio Measurement

Data Selection:

- Trigger: L1: dimuon $p_T > 4$ GeV; HLT: dimuon, Loose B & J/ψ mass cuts
- Pre-selection to select good quality reconstructed tracks & vertices
- Reference Channel Data divided into two parts to avoid bias of yield extraction:
 - Odd-#: odd event numbers used for data-driven reweighting of MC
 - Even-#: even event numbers used to extract reference channel yield and background estimate

Monte-Carlo tuning:

- J/ψ polarization correction
 - MC generated without decay polarization
- Binned (p_T^B , η^B) re-weighting of MC:
 - Generator Level (GL) re-weighting:
 - Applied to signal & reference MC
 - Corrects for GL filter biases
 - Derived from MC samples generated with a loose GL filter
 - Data Driven re-weighting:
 - Applied to signal, reference & $b\bar{b} \to \mu\mu X$
 - Derived from differences between MC and odd-# reference channel data
- Small residual diff.s \Rightarrow Syst. error on $R_{A\epsilon}$

Side-band data c.f. MC for Isolation parameter $I_{0.7}$

5

Background Modelling & Selection Optimization

Combinatorial Background:

- Suppressed by BDT Discriminant
 - 13 discriminating variables inputs
 - Training using MC datasets
 - Selection Optimization using MC & data:
 - 2D optimization (Δm , BDT output)
 - Signal MC & odd-# sideband data

 Maximize: $\mathcal{P} = \frac{\epsilon}{1 + \sqrt{B}}$
 - $\Rightarrow \Delta m < 121 \text{ GeV; BDT output} > 0.118$
- Residual background, after Δm & BDT cuts, determined by interpolation:
 - using even even-# side-band data

Peaking background:

- B candidates with 1 or 2 misidentified μ
- Misidentification prob. from MC: π^{\pm} : 2.1%; K⁺: 4.1%; K⁻: 3.3%
- Estimate yield for B→hh' from luminosity, measured branching fractions, acceptance & effic.

Single Event Sensitivity

SES: BR corresponding a single observed signal event:

$$B(B_s^0 \rightarrow \mu^+ \mu^-) = SES \times N_{\mu^+ \mu^-}$$

$$SES = B(B^{\pm} \to J/\psi K^{\pm} \to \mu^{-}\mu^{+}K^{\pm}) \times \frac{f_{u}}{f_{s}} \times \frac{R_{A\epsilon}}{N_{J/\psi K^{\pm}}}$$

- Acceptance \times Efficiency Ratio, $R_{A\epsilon}$:
 - Evaluated from MC sample:

$$A \times \epsilon \text{ for B}^+$$
: 1.317 $\pm 0.008\% \text{(stat.)}$
 $A \times \epsilon \text{ for } B_s^0$: 4.929 $\pm 0.084\% \text{(stat.)}$

$$R_{A\epsilon} = 0.267 \pm 1.8\% \text{(stat.)} \pm 6.9\% \text{(syst.)}$$

- Yield for Reference Channel, $N_{I/\psi K^{\pm}}$:
 - Unbinned extended max. likelihood fits to mass & mass uncertainty (m, δm)
 - Using even-# data in mass range: 4930-5630 MeV

$$N_{J/\psi K^{\pm}} = 15\ 214\ \text{even-no. events}\ \pm 1.1\%(\text{stat.}) \pm 2.4\%(\text{syst.})$$

Stat. error (2.1%) plus syst. error (12.5%) in quadrature.

 $m_{\rm J/wK}$ [MeV]

- Single Event Sensitivity: $SES = (2.065 \pm 0.262) \times 10^{-9}$
 - Dominant Syst. : Ref. Chan. BR & f_{11}/f_{s} : 8.5%; $R_{A\epsilon}$: 6.9%

a: Phys Rev D86 (2012) 010001 b: JHEP 1304 (2013) 001

EPSHEP 2013, Stockholm

 $SES = B(B^{\pm} \to J/\psi K^{\pm} \to \mu^{-}\mu^{+}K^{\pm}) \times \frac{f_{u}}{f_{s}} \times \frac{R_{A\epsilon}}{N_{J/\psi K^{\pm}}} \stackrel{\text{log}}{\underset{\text{\sim}}{\downarrow}} 4500$ VS = 7 TeV

Signal + background fit $B^{\pm} \rightarrow J/\psi \pi^{\pm}$ background \equiv •••• Other backgrounds 2500 2000 1500E 1000 500 5100 5200 5300 5400

 $B(B^{\pm} \to J/\psi K^{\pm}): 1.016 \pm 0.033 \times 10^{-3} (PDG)^{a}$

 $B(B^{\pm} \to \mu^{+}\mu^{-}): 5.93 \pm 0.06 \times 10^{-2} \text{ (PDG)}^{a}$

 $f_{...}/f_{a}$: 0.256±0.020 (LHCb)^b

$B_s^0 \rightarrow \mu^+ \mu^-$ BR Limit

$$B(B_s^0 \rightarrow \mu^+ \mu^-) = SES \times N_{\mu^+ \mu^-}$$

- 6 events observed in mass region after un-blinding
- Estimated background contribution: 6.75 events
 - From SB interpolation using even-# events
 - Includes estimated 0.295 B→hh' events

SM prediction: 1.7 ± 0.2 signal events in mass window

$$B(B_s^0 \to \mu^+ \mu^-) < 1.5 \times 10^{-8} (95\% \text{ C.L.})$$

- Expected limit: $1.6^{+0.7}_{-0.4} \times 10^{-8} (95\% \text{ C.L.})$
- Time integrated SM¹ prediction:
 - $BR = (3.54 \pm 0.30) \times 10^{-9}$
- Will update with 2012 data including further analysis improvements

1:K.De Bruyn et al., Phys.Rev.Lett. 109 (2012) 041801

CL

Events / 60 MeV

EPSHEP 2013, Stockholm

Λ_b Properties

• Hadron colliders are currently the only place to study b baryons

- Provides means to test theory:
 - How heavy quarks are produced; how they hadronize
 - Whether polarization is preserved in the process
- Use decay: $\Lambda_b^0 \to J/\psi(\mu^+\mu^-)\Lambda^0(p^+\pi^-)$ to measure:
 - Λ_b^o mass & lifetime
 - Parity violating decay assymmetry parameter, α_{b_j} & helicity amplitudes
 - Compare Lifetime Ratio $\tau(\Lambda_b)/\tau(B_d)$ and α_b with theory predictions

• Data Pre-selection:

- $J/\psi \& \Lambda^{o}$ pre-selection:
 - J/ψ : 2.8 GeV<M($\mu\mu$)<3.4GeV
 - $\Lambda^{o}: 1.08 \le M(hh) \le 1.15 \text{ GeV}$
- $\Lambda_b^0 \rightarrow J/\psi(\mu^+\mu^-)\Lambda^0(p^+p^-)$ pre-selection:
 - Cascade topology fit constrain:
 - $J/\psi \& \Lambda^{o}$ masses
 - \vec{p}_V ° points to $\mu\mu$ vertex

Cascade topology fit requirements:

- Fit $\chi^2/N_{dof} < 3 \ (N_{dof} = 6)$
- $V^{o}: p_{T} > 3.5 \text{ GeV}; L_{xy} > 10 \text{ mm}$
- 5.38 < M(J/ $\psi \Lambda^0$) < 5.90 GeV
- If also $B_d^o: \mathcal{P}(\Lambda_b^o) \mathcal{P}(B_d^o) \ge 0.05$

$\Lambda_{\rm b}$ mass & lifetime

Phys. Rev. D87 (2013) 032002

Unbinned maximum likelihood fit:

$$L = \prod_{i=1}^{N} \left[f_{\text{sig}} \mathcal{M}_{\text{s}}(m_i | \delta_{m_i}) \mathcal{T}_{\text{s}}(\tau_i | \delta_{\tau_i}) w_{\text{s}}(\delta_{m_i}, \delta_{\tau_i}) + \right]$$

$$(1 - f_{\mathrm{sig}}) \mathcal{M}_{\mathrm{b}}(m_i | \delta_{m_i}) \mathcal{T}_{\mathrm{b}}(\tau_i | \delta_{ au_i}) w_{\mathrm{b}}(\delta_{m_i}, \delta_{ au_i})$$

 $= 0.960\pm0.025(stat.)\pm0.016(syst.)$

c.f. 0.976±0.013 (LHCb); 0.864±0.052 (D0); 1.020±0.030 (CDF²)

 $0.88-0.97 \text{ (HQE}^a); 0.86^b-0.88^c(\pm 0.05) \text{ (NLO pQCD}^b)$

α_b Measurement

ATLAS-CONF-2013-071

NEW

• $\Lambda_b^0 \to J/\psi(\mu^+\mu^-)\Lambda^0(p^+\pi^-)$ decay described by	•	$\Lambda_b^o \rightarrow$	$J/\psi(\mu^+\mu$	$^{-})\Lambda^{0}(p^{+}$	π^{-}	decay d	described	by
--	---	---------------------------	-------------------	--------------------------	-----------	---------	-----------	----

- 4 helicity amplitudes \Rightarrow
- Dynamics described by 5 angles sensitive to squared amplitudes
- Parity violating decay asymmetry parameter:

$$\alpha_{b} = |a_{+}|^{2} - |a_{-}|^{2} + |b_{+}|^{2} - |b_{-}|^{2}$$

• Full angular PDF:

$$W(\overrightarrow{\Omega}, \overrightarrow{A}, P) = \frac{1}{(4\pi)^3} \sum_{i=0}^{19} f_{1i}(\overrightarrow{A}) f_{2i}(P\alpha_{\Lambda}) F_i(\overrightarrow{\Omega})$$

• $f_{1i}(\vec{A})$: bilinear combination of helicity amplitudes

$$\vec{A} \equiv (a_{+}, a_{-}, b_{+}, b_{-}) \quad a_{+} = |a_{+}| e^{i\rho_{+}}, \ a_{-} = |a_{-}| e^{i\rho_{-}}, b_{+} = |b_{+}| e^{i\omega_{+}}, b_{-} = |b_{-}| e^{i\omega_{-}}$$

- $f_{2i}(P\alpha_{\Lambda})$: has a values of $P\alpha_{\Lambda}$, P, α_{Λ} or 1
 - Assym. param. $\alpha_{\Lambda} = -0.642 \pm 0.013^{[1]} \text{ for } \Lambda^0 \to p\pi^+$
 - Exploit ATLAS symmetry in $\eta \Rightarrow$ Polarization = 0
- $F_i(\overline{\Omega})$: orthogonal functions of decay angles
- Analysis uses method of moments:

	Amplitude	λ_{Λ}	$\lambda_{J/\psi}$
1	a_{+}	$+^{1}/_{2}$	0
	a_	$-\frac{1}{2}$	0
	b_{+}	$-\frac{1}{2}$	-1
	b_	$+^{1}/_{2}$	+1

$$|a_{+}|^{2}+|a_{-}|^{2}+|b_{+}|^{2}+|b_{-}|^{2}=1$$

Λ helicity frame

J/ψ helicity frame

Extract α_b and helicity amplitudes from measured averages of each F_i (moments).

α_b Measurement

Selection of Λ_h^0 dataset:

- As for the mass & lifetime analysis plus specific requirements for this analysis:
 - B_d^o veto: $\mathcal{P}(\Lambda_b^o) > \mathcal{P}(B_d^o)$ if both
 - Λ_b proper decay time $\tau > 0.35$ ps
 - Sig. Reg.: $5560 < M(J/\psi \Lambda^0) < 5680 \text{ MeV}$
- N_{sig} , N_{Bd} , N_{other} determined from extended binned maximum likelihood fit

Extraction of α_b and helicity amplitudes:

• Perform χ^2 fit to measured moments $\langle F_i \rangle$:

$$\chi^{2} = \sum_{i=1}^{5} \sum_{j=1}^{5} (\langle F_{i} \rangle^{\text{expected}} - \langle F_{i} \rangle) V_{ij}^{-1} (\langle F_{j} \rangle^{\text{expected}} - \langle F_{j} \rangle)$$

 V_{ij} : Covarience matrix of measured $< F_i >$

<F_i>expected = $\sum f_j(\vec{A})C_{ij}$ Model

Detector Effects

Model defined in terms of 5 free parameters:

$$\alpha_{b}, k_{0} = \frac{|a_{+}|}{\sqrt{|a_{-}|^{2} + |b_{+}|^{2}}}, k_{1} = \frac{|b_{-}|}{\sqrt{|a_{-}|^{2} + |b_{-}|^{2}}}, \quad \Delta_{+} = \rho_{+} - \omega_{+} \\
\Delta_{-} = \rho_{-} - \omega_{-}$$

- Detector accept. and effic. encoded by C_{ij} :
 - No dependence on helicity parameters
 - Determined from MC samples generated with flat angular distributions

12

EPSHEP 2013, Stockholm

Fit Result

• Fit Result:

$$\alpha_b = 0.28 \pm 0.16 \pm 0.06$$
 $|a_+| = 0.17^{+0.12}_{-0.17} \text{ (stat.)} \pm 0.06 \text{ (syst.)}$
 $|a_-| = 0.59^{+0.06}_{-0.07} \text{ (stat.)} \pm 0.04 \text{ (syst.)}$
 $|b_+| = 0.78^{+0.04}_{-0.05} \text{ (stat.)} \pm 0.02 \text{ (syst)},$
 $|b_-| = 0.08^{+0.13}_{-0.08} \text{ (stat.)} \pm 0.05 \text{ (syst.)}$

- Systematics mainly from:
 - Uncertainties in background contrib. to measured <F_i>
 - Calculation of correction matrix

Check of fit results:

- MC events weighted with signal PDF and parameters resulting from fit
- Compare F_i distribution for data with weighted signal MC plus sideband b.g.

 F_2

- Λ^0 and J/ ψ from Λ_h^0 decay are highly polarized in the direction of their momenta
- Large $|a_-|$ and $|b_+| \Longrightarrow$ negative-helicity states for Λ^0 preferred
- α_b value:
 - consistent with LHCb measurement: $0.05\pm0.17(\text{stat.})\pm0.07(\text{Phytics Letters B 724} (2013) 27$
 - Intermediate between pQCD and HQET predictions:
 - ~2.5 σ c.f. pQCD expectation ~(-0.14 \rightarrow -0.18) Chou et. al. Phys. Rev. D65 (2002) 074030
 - ~2.9σ c.f. HQET expectation (0.78)

 Leitner et al. Nucl. Phys. A755 (2005) 435,
 Ajaltouni et al. Phys. Let. B614 (2005) 165

Summary

NEW • $B(B_s^0 \to \mu^+ \mu^-)$ measurement updated with full 2011 dataset (4.9 fb⁻¹):

• $B(B_s^0 \to \mu^+ \mu^-) < 1.5 (95\% \text{ C.L.})$

- ATLAS-CONF-2013-076
- Consistent with SM expectation, LHCb measurement and other experimental limits
- Λ_b^0 mass & lifetime have been measured:

$$\tau = 1.449 \pm 0.036 \text{(stat.)} \pm 0.017 \text{ (syst.)} \text{ (ps)}$$

 $m = 5619.7 \pm 0.7 \text{(stat.)} \pm 1.1 \text{(syst.)} \text{ MeV}$
 $R = \tau(\Lambda_b^o) / \tau(B_d^o) = 0.960 \pm 0.025 \text{(stat.)} \pm 0.016 \text{(syst.)}$

- Consistent with both pQCD and HQET predictions and other experimental measurements
- NEW Λ_b^0 partity violating parameter, α_b , and helicity amplitudes have been measured:

 ATLAS-CONF-2013-071

$$\begin{split} &\alpha_{b} = 0.28 \pm 0.16 \pm 0.06 \\ &|a_{+}| = 0.17^{+0.12}_{-0.17} \text{ (stat.)} \pm 0.06 \text{ (syst.)}; \ |a_{-}| = 0.59^{+0.06}_{-0.07} \text{ (stat.)} \pm 0.04 \text{ (syst.)} \\ &|b_{+}| = 0.78^{+0.04}_{-0.05} \text{ (stat.)} \pm 0.02 \text{ (syst)}; \ |b_{-}| = 0.08^{+0.13}_{-0.08} \text{ (stat.)} \pm 0.05 \text{ (syst.)} \end{split}$$

- α_b differs from pQCD expectation –(0.14~0.18) by ~2.5 σ and HQET expectation (0.78) by 2.9 σ
- More accurate measurements will be made with 2012 data (21.7 fb⁻¹ rec.)

Backup

Discriminating Variables for $B_s^0 \rightarrow \mu^+\mu^-$

Variable	Description	Rankin
L_{xy}	Scalar product in the transverse plane of $(\Delta \vec{x} \cdot \vec{p}^B)/ \vec{p}_T^B $	1
I _{0.7} isolation	Ratio of $ \vec{p}_{\rm T}^B $ to the sum of $ \vec{p}_{\rm T}^B $ and the transverse momenta of all tracks with $p_{\rm T}>0.5$ GeV within a cone $\Delta R<0.7$ from the B direction, excluding B decay products	2
$ \alpha_{2D} $	Absolute value of the angle in the transverse plane between $\Delta \vec{x}$ and \vec{p}^B	3
$p_{ m L}^{ m min}$	Minimum momentum of the two muon candidates along the B direction	4
p_{T}^{B}	B transverse momentum	5
ct significance	Proper decay length $ct = L_{xy} \times m_B/p_T^B$ divided by its uncertainty	6
χ^2_{z}, χ^2_{xy}	Significance of the separation between production (PV) and decay vertex (SV) $\Delta \vec{x}^T \cdot \left(\sigma_{\Delta \vec{x}}^2\right)^{-1} \cdot \Delta \vec{x}$, in z and (x,y) , respectively	7, 13
$ D_{\mathrm{xy}} ^{\mathrm{min}}, D_{\mathrm{z}} ^{\mathrm{min}}$	Absolute values of the minimum distance of closest approach in the xy plane or along z of tracks in the event to the B vertex	8, 11
ΔR	Angle $\sqrt{(\Delta \phi)^2 + (\Delta \eta)^2}$ between $\Delta \vec{x}$ and \vec{p}^B	9
$ d_0 ^{\max}, d_0 ^{\min}$	Absolute values of the maximum and minimum impact parameter in the transverse plane of the B decay products relative to the primary vertex	10, 12

BDT input variables for $B(B_s^0 \rightarrow \mu^+ \mu^-)$ measurement

• Stability of Isolation parameter w.r.t. pile-up

17

B->J/ψK yield

Fit results

CLs limit extraction

```
\mathcal{L} = \text{Poisson}(N_{SR}^{obs}|\epsilon \mathcal{B} + N_{bkg} + N_{B \to hh}) \text{Poisson}(N_{bkg,SB}^{obs}|R_{bkg} N_{bkg}) \times 
\text{Gauss}(\epsilon^{obs}|\epsilon, \sigma_{\epsilon}) \text{Gauss}(R_{bkg}^{obs}|R_{bkg}, \sigma_{R_{bkg}})
```

- \mathcal{B} Branching fraction to be measured
- ϵ Inverse of the SES constrained to ϵ^{obs}
- N_{bkg} No. Continuum background events in signal region
- N_{SR}^{obs} No. even and odd numbered events observed in the signal region
- $N_{bkg,SB}^{obs}$ No. even no. events observed in sidebands
- $N_{B\to hh'}$ Contribution from irreducible resonant B \to hh' background
- R_{bkg} Expected ration of background events in the SB to those in the SR constrained to R_{bkg}^{obs} the ratio of widths of the two regions

Comparison with other measurements

 $ATLAS: B(B_S^0 \rightarrow \mu^+\mu^-) < 1.5 (95\% \text{ C.L.})$

20

		$BR\left(B^0 \to \mu^+\mu^-\right)$	$BR\left(B_s^0 \to \mu^+\mu^-\right)$
LHCb	I.I fb ⁻¹ (8TeV) I.0 fb ⁻¹ (7TeV)	<9.4×10 ⁻¹⁰	[1.1, 6.4]×10 ⁻⁹ (3.2 ^{+1.5} _{-1.2})×10 ⁻⁹
CMS	5 fb ⁻¹ (7TeV)	<1.8×10 ⁻⁹	<7.7×10 ⁻⁹
ATLAS EXPERIMENT http://atlas.ch	4.9 fb-1 (7TeV)	-	<1.5 ×10 ⁻⁸
	9.6 fb ⁻¹	<4.6×10 ⁻⁹	[0.8, 34]×10 ⁻⁹ (1.3 ^{+0.9} -0.7)×10 ⁻⁸
	I0 fb ⁻¹	-	<1.5×10 ⁻⁸
BELLE	78fb ⁻¹	<1.6×10 ⁻⁸	-
BABAR	347fb ⁻¹	<8.3×10 ⁻⁹	-

Mass & Lifetime Fit

22

Λ_b Liftetime measurement

Efficiency correction as a function of decay length

$\Lambda_{\rm b}$ assymetry measurement

Full Angular PDF

$$w(\vec{\Omega}, \vec{A}, P) = \frac{1}{(4\pi)^3} \sum_{i=0}^{19} f_{1i}(\vec{A}) f_{2i}(P, \alpha_{\Lambda}) F_i(\vec{\Omega})$$

i	f_{1i}	f_{2i}	F_i
0	$a_{+}a_{+}^{*} + a_{-}a_{-}^{*} + b_{+}b_{+}^{*} + b_{-}b_{-}^{*}$	1	1
1	$a_{+}a_{+}^{*} - a_{-}a_{-}^{*} + b_{+}b_{+}^{*} - b_{-}b_{-}^{*}$	Р	$\cos \theta$
2	$a_{+}a_{+}^{*} - a_{-}a_{-}^{*} - b_{+}b_{+}^{*} + b_{-}b_{-}^{*}$	α_{Λ}	$\cos heta_1$
3	$a_{+}a_{+}^{*} + a_{-}a_{-}^{*} - b_{+}b_{+}^{*} - b_{-}b_{-}^{*}$	$P lpha_{m \Lambda}$	$\cos \theta \cos \theta_1$
4	$-a_{+}a_{+}^{*}-a_{-}a_{-}^{*}+\frac{1}{2}b_{+}b_{+}^{*}+\frac{1}{2}b_{-}b_{-}^{*}$	1	$\frac{1}{2} (3 \cos^2 \theta_2 - 1)$
5	$-a_{+}a_{+}^{*}+a_{-}a_{-}^{*}+\frac{1}{2}b_{+}b_{+}^{*}-\frac{1}{2}b_{-}b_{-}^{*}$	P	$\frac{1}{2} \left(3 \cos^2 \theta_2 - 1 \right) \cos \theta$
6	$-a_{+}a_{+}^{*}+a_{-}a_{-}^{*}-\frac{1}{2}b_{+}b_{+}^{*}+\frac{1}{2}b_{-}b_{-}^{*}$	α_{Λ}	$\frac{1}{2} \left(3 \cos^2 \theta_2 - 1 \right) \cos \theta_1$
7	$-a_{+}a_{+}^{*}-a_{-}a_{-}^{*}-\frac{1}{2}b_{+}b_{+}^{*}-\frac{1}{2}b_{-}b_{-}^{*}$	$P \alpha_{\Lambda}$	$\frac{1}{2} \left(3 \cos^2 \theta_2 - 1 \right) \cos \theta \cos \theta_1$
8	$-3Re(a_{+}a_{-}^{*})$	$P \alpha_{\Lambda}$	$\sin \theta \sin \theta_1 \sin^2 \theta_2 \cos \varphi_1$
9	$3Im(a_{+}a_{-}^{*})$	$P \alpha_{\Lambda}$	$\sin heta\sin heta_1\sin^2 heta_2\sinarphi_1$
10	$-\frac{3}{2}Re(b_{-}b_{+}^{*})$	$P \alpha_{\Lambda}$	$\sin \theta \sin \theta_1 \sin^2 \theta_2 \cos(\varphi_1 + 2\varphi_2)$
11	$\frac{3}{2}Im(b_{-}b_{+}^{*})$	$P \alpha_{\Lambda}$	$\sin \theta \sin \theta_1 \sin^2 \theta_2 \sin(\varphi_1 + 2 \varphi_2)$
12	$-\frac{3}{\sqrt{2}}Re(b_{-}a_{+}^{*}+a_{-}b_{+}^{*})$	$P \alpha_{\Lambda}$	$\sin\theta\cos\theta_1\sin\theta_2\cos\theta_2\cos\varphi_2$
13	$\frac{3}{\sqrt{2}}Im(b_{-}a_{+}^{*}+a_{-}b_{+}^{*})$	$P \alpha_{\Lambda}$	$\sin\theta\cos\theta_1\sin\theta_2\cos\theta_2\sin\varphi_2$
14	$-\frac{3}{\sqrt{2}}Re(b_{-}a_{-}^{*}+a_{+}b_{+}^{*})$	$P \alpha_{\Lambda}$	$\cos \theta \sin \theta_1 \sin \theta_2 \cos \theta_2 \cos (\varphi_1 + \varphi_2)$
15	$\frac{3}{\sqrt{2}}Im(b_{-}a_{-}^{*}+a_{+}b_{+}^{*})$	$P \alpha_{\Lambda}$	$\cos\theta\sin\theta_1\sin\theta_2\cos\theta_2\sin(\varphi_1+\varphi_2)$
16	$\frac{3}{\sqrt{2}}$ Re $(a_b_+^* - b_a_+^*)$	Р	$\sin \theta \sin \theta_2 \cos \theta_2 \cos \varphi_2$
17	$-\frac{\sqrt{3}}{\sqrt{2}}Im(a_{-}b_{+}^{*}-b_{-}a_{+}^{*})$	P	$\sin\theta\sin\theta_2\cos\theta_2\sin\varphi_2$
18	$\frac{3}{\sqrt{2}}$ Re $(b_{-}a_{-}^{*}-a_{+}b_{+}^{*})$	$lpha_{\Lambda}$	$\sin\theta_1\sin\theta_2\cos\theta_2\cos(\varphi_1+\varphi_2)$
19	$-\frac{\sqrt{3}}{\sqrt{2}}Im(b_{-}a_{-}^{*}-a_{+}b_{+}^{*})$	$lpha_{\Lambda}$	$\sin\theta_1\sin\theta_2\cos\theta_2\sin(\varphi_1+\varphi_2)$

α_b Measurement

- Polarization P=0: due to symmetry of initial state & ATLAS symmetry in pseudo-rapidity
 - f_{1i} , f_{2i} , F_{i} reduced to 6 coefficients (from 20):

i	f_{1i}	f_{2i}	F_i
0	1	1	1
2	$(k_0^2 + k_1^2 - 1) + \alpha_b(k_0^2 - k_1^2)$	α_{Λ}	$\cos \theta_1$
4	$\frac{1}{4}[(3k_1^2 - 3k_0^2 - 1) + 3\alpha_b(1 - k_1^2 - k_0^2)]$	1	$\frac{1}{2}(3\cos^2\theta_2 - 1)$
6	$-\frac{1}{4}[(k_0^2 + k_1^2 - 1) + \alpha_b(3 + k_0^2 - k_1^2)]$	α_{Λ}	$\frac{1}{2}\left(3\cos^2\theta_2 - 1\right)\cos\theta_1$
18	$\frac{3}{\sqrt{2}} \left[\frac{1 - \alpha_b}{2} \sqrt{k_1^2 (1 - k_1^2)} \cos(-\Delta) - \frac{1 + \alpha_b}{2} \sqrt{k_0^2 (1 - k_0^2)} \cos(\Delta_+) \right]$	α_{Λ}	$\sin\theta_1 \sin\theta_2 \cos\theta_2 \cos(\varphi_1 + \varphi_2)$
19	$-\frac{3}{\sqrt{2}} \left[\frac{1-\alpha_b}{2} \sqrt{k_1^2 (1-k_1^2)} \sin(-\Delta) - \frac{1+\alpha_b}{2} \sqrt{k_0^2 (1-k_0^2)} \sin(\Delta_+) \right]$	α_{Λ}	$\sin\theta_1 \sin\theta_2 \cos\theta_2 \sin(\varphi_1 + \varphi_2)$

• Use following 5 parameters to define model:

$$\alpha_{b} = |a_{+}|^{2} - |a_{-}|^{2} + |b_{+}|^{2} - |b_{-}|^{2}$$

$$k_{0} = \frac{|a_{+}|}{\sqrt{|a_{-}|^{2} + |b_{+}|^{2}}}, \quad k_{1} = \frac{|b_{-}|}{\sqrt{|a_{-}|^{2} + |b_{-}|^{2}}}$$

$$\Delta_{+} = \rho_{+} - \omega_{+}, \qquad \Delta_{-} = \rho_{-} - \omega_{-}$$

Efficiency Correction

EPSHEP 2013, Stockholm

-0.0007

-0.0003

0.00035

0.0005

0.0450

-0.0032

$$\mathbf{D} = diag\{1, \frac{1}{3}, \frac{1}{5}, \frac{1}{15}, \frac{2}{45}, \frac{2}{45}\}$$

Fit Results

• Measured $\langle F_i \rangle$ values:

$$\bullet$$
 < F_2 >=-0.282 \pm 0.021

$$\bullet$$
 < F_4 >=-0.044±0.017

$$\bullet$$
 < F_6 >=0.001±0.010

$$\bullet$$
 < F_{18} >=0.019±0.009

$$\bullet$$
 < F_{19} >=-0.002 \pm 0.009

$\langle F_i \rangle$	$\langle F_2 \rangle$	$\langle F_4 \rangle$	$\langle F_6 \rangle$	$\langle F_{18} \rangle$	$\langle F_{19} \rangle$
	1		-0.121	0.028	0.003
$\langle F_2 \rangle$	1	-0.066	0.121		
$\langle F_4 \rangle$		1	-0.503	0.088	0.000
$\langle F_6 \rangle$			1	-0.025	-0.008
$\langle F_{18} \rangle$				1	0.048
$\langle F_{19} \rangle$					1

Correlation matrix of $\langle F_i \rangle$ Measurements

Values obtained from fit:

•
$$\alpha_b = 0.28 \pm 0.16$$
, $k_0 = 0.22^{+0.14}_{-0.57}$, $k_1 = 0.13^{+0.20}_{-0.47}$

Correlation matrix of the fitted parameters.

Parameter	α_b	k_0	k_1
α_b	1	0.41	-0.20
k_0		1	0.19
k_1			1

