Υ(nS) spectroscopy at Belle

Pavel Krokovny

Budker Institute of Nuclear Physics, Novosibirsk, Russia

- Introduction
- Search for $\Upsilon(2S) \rightarrow X_{bb}(9975)\gamma$
- Search for $\Upsilon(1,2S) \rightarrow$ hyperon anti-hyperon + hadrons
- Υ (5S)→Υ(1D)π⁺π⁻
- Summary

EPS HEP 2013

KEKB and **Belle**

$\eta_b(2S)$ claim based on CLEO III data

Observation of the $\eta_b(2S)$ Meson in $\Upsilon(2S) \rightarrow \gamma \eta_b(2S)$, $\eta_b(2S) \rightarrow$ Hadrons and Confirmation of the $\eta_b(1S)$ Meson

PRL 109, 082001 (2012)

S. Dobbs, Z. Metreveli, A. Tomaradze, T. Xiao, and Kamal K. Seth

Northwestern University, Evanston, Illinois 60208, USA (Received 18 April 2012; published 24 August 2012)

The data for 9.3 million $\Upsilon(2S)$ and 20.9 million $\Upsilon(1S)$ taken with the CLEO III detector have been used to study the radiative population of states identified by their decay into 26 different exclusive hadronic final states. In the $\Upsilon(2S)$ decays, an enhancement is observed at a $\sim 5\sigma$ level at a mass of 9974.6 \pm 2.3(stat) \pm 2.1(syst) MeV. It is attributed to $\eta_b(2S)$ and corresponds to the $\Upsilon(2S)$ hyperfine splitting of 48.7 \pm 2.3(stat) \pm 2.1(syst) MeV. In the $\Upsilon(1S)$ decays, the identification of $\eta_b(1S)$ is confirmed at a $\sim 3\sigma$ level with $M[\eta_b(1S)]$ in agreement with its known value.

The measurement is carried out in 26 exclusive decays of the $\eta_b(2S)$ into charged hadrons.

 $\mathcal{B}_1 \times \mathcal{B}_2 \equiv \mathcal{B}_1[\Upsilon(nS) \to \gamma \eta_b(nS)] \times \sum_{i=1}^{26} \mathcal{B}_{2i}[\eta_b(nS) \to h_i].$

 $\mathcal{B}_1 \times \mathcal{B}_2(\eta_b(2S)) = (46.2 \pm ^{+29.7}_{-14.2} \pm 10.6) \times 10^{-6}$

Reminder: Our ΔM_{HF} (2S) = 24. $3^{+4.0}_{-4.5}$ MeV/c²

S. Dobbs's $\eta_b(2S)$ signal is not consistent with theory as well as our measurement 3

$\Upsilon(2S) \rightarrow \gamma b\overline{b}$

- Study is performed using the 25 fb⁻¹ data (157.8 imes 10⁶ Y(2S) events) .
- ~17 times more data than CLEO-c's Υ(2S) sample
- We study Υ(2S) → γ (bb̄); where (bb̄) decays hadronically (same 26 exclusive hadronic final states as mentioned in S. Dobbs et. al.)

 $\begin{array}{l} \mathbf{X_i}: 2(\pi^+\pi^-), 3(\pi^+\pi^-), 4(\pi^+\pi^-), 5(\pi^+\pi^-), \\ K^+K^-\pi^+\pi^-, \quad K^+K^-2(\pi^+\pi^-), \quad K^+K^-3(\pi^+\pi^-), \\ K^+K^-4(\pi^+\pi^-), \quad 2(K^+K^-), \quad 2(K^+K^-)\pi^+\pi^-, \\ 2(K^+K^-)2(\pi^+\pi^-), \quad 2(K^+K^-)3(\pi^+\pi^-), \quad p\bar{p}\pi^+\pi^-, \\ p\bar{p}2(\pi^+\pi^-), \quad p\bar{p}3(\pi^+\pi^-), \quad p\bar{p}4(\pi^+\pi^-), \quad p\bar{p}K^+K^-\pi^+\pi^-, \\ p\bar{p}K^+K^-2(\pi^+\pi^-), \quad p\bar{p}K^+K^-3(\pi^+\pi^-), \quad K^0_SK^\pm\pi^\mp, \\ K^0_SK^\pm\pi^\mp\pi^+\pi^-, K^0_SK^\pm\pi^\mp2(\pi^+\pi^-), K^0_SK^\pm\pi^\mp3(\pi^+\pi^-), \\ 2K^0_S\pi^+\pi^-, 2K^0_S2(\pi^+\pi^-), 2K^0_S3(\pi^+\pi^-). \end{array}$

Following decay channels are good control samples

 $\Upsilon(2S) \rightarrow \gamma \chi_{bJ} \quad (J = 0, 1, 2)$

and χ_{bJ} can decay to the hadronic modes (comprising charged pions, kaons, protons and K_s mesons)

 Off-resonance Υ(4S) data [89.5 fb⁻¹ ~4 times larger than our Υ(2S) data] used for background shape study.

$\Upsilon(2S) \rightarrow \gamma b\overline{b}$ selection

- Impact parameter cuts
- Number of charged tracks
- Particle identification (pion, kaon, proton)

<u>y - selection</u>

- Isolated cluster
- Energy of gamma > 22 MeV
- E9/E25 > 0.85
- Exclude endcaps

$|\cos\theta_{T}| < 0.8$: Continuum - Suppression

Simple and Straightforward !!

 $\Upsilon(2S) \rightarrow \gamma b\overline{b}$ signal

 ΔM for $\eta_{b}(2S)$ and χ_{b} region

No signal around Δ M=49 MeV

- Belle disconfirms the $\eta_b(2S)$ candidate found by Dobbs et al at 9975 MeV. • The real $\eta_b(2S)$ is the one found by Belle in inclusive mode via radiative decays from $h_b(1,2S)$: PRL 109, 232002 (2012).
- No sensitivity at Belle to $\eta_b(2S)$ around $\Delta M=24$ MeV.

Search for $Y(1,2S) \rightarrow \Lambda + X$

Hyperon production is **enhanced** in Y decays with respect to the nearby continuum and is **large**.

CLEO studied the enhancement for baryon **B**: $\sigma[e^+e^- \rightarrow Y(nS) \rightarrow B + X]$ $\sigma[e^+e^- \rightarrow qq \rightarrow B + X]$

The MC fragmentation model fails only in describing Λ and ϕ enhancement

2S Data 3S Data з 15 MC ggg/qa Enhancement △ 2S MC ♦ 3S MC CLEO'84 2 ۶. ¢۲ 0 p f₂(1270) р φ Λ

Phys.Rev.D76, 012005

1S Data

First study of exclusive decay channels;

Y(nS) $\rightarrow \Lambda\Lambda$ + combination of K⁺K⁻, $\pi^+\pi^-$, **pp** and π^0

 \rightarrow Max 9 bodies, Max one $\pi^0 \rightarrow$ 48 channels

- Full event reconstruction
- Kinematic Fit of displaced vertexes
- Feedback suppression ($p_t < 50 \text{ MeV}$)

 $Y(1,2S) \rightarrow \Lambda\Lambda + X$

Bottomonia and B mesons baryonic decays share two common features:

- \rightarrow Near threshold enhancement
- \rightarrow Multiplicity hyerarchy

Results bb→hyperon anti-hyperon+ X

Evidence/observation in :

- 15 Y(1S) decays channels
- 7 Y(2S) decays channels

No evidence of χ_b decay in any channel

Channel	$\mathcal{B}[\Upsilon(1S) \to X] \ [\times 10^{-6}]$	$\mathcal{B}[\Upsilon(2S) \to X] \ [imes 10^{-6}]$	Q
$\Lambda\bar{\Lambda} + \pi^+\pi^-$	$1.43 \pm 0.48 \pm 0.23$		
$\Lambda\bar{\Lambda} + K^+K^-$	$1.29 \pm 0.51 \pm 0.20$	$1.27 \pm 0.47 \pm 0.20$	$0.98 \pm 0.53 \pm 0.11$
$\Lambda\bar{\Lambda} + 2(\pi^+\pi^-)$	$6.99 \pm 1.28 \pm 1.11$	$3.81 \pm 0.97 \pm 0.61$	$0.55 \pm 0.17 \pm 0.06$
$\Lambda\bar{\Lambda} + \pi^+\pi^-K^+K^-$	$11.83 \pm 2.01 \pm 1.87$		
$\Lambda\bar{\Lambda} + \pi^+\pi^-p\bar{p}$	$2.99 \pm 0.86 \pm 0.47$		
$\Lambda\bar{\Lambda} + 3(\pi^+\pi^-)$	$13.14 \pm 2.36 \pm 2.10$	$4.72 \pm 1.64 \pm 0.75$	$0.36 \pm 0.14 \pm 0.04$
$\Lambda\bar{\Lambda} + 2(\pi^+\pi^-)K^+K^-$	$18.99 \pm 3.60 \pm 3.04$		D.
$\Lambda\bar{\Lambda} + 2(\pi^+\pi^-)p\bar{p}$	$6.03 \pm 1.67 \pm 0.96$		Clip
$\Lambda\bar{\Lambda} + \pi^+\pi^-2(K^+K^-)$		$2.93 \pm 1.49 \pm 0.47$	nin
$\Lambda\bar{\Lambda} + \pi^+\pi^- \pi^0$	$2.00 \pm 0.97 \pm 0.34$		AD.
$\Lambda\bar{\Lambda} + 2(\pi^+\pi^-) \pi^0$	$13.86 \pm 3.96 \pm 2.35$	$9.76 \pm 3.06 \pm 1.66$	$0.70 \pm 0.30 \pm 0.08$
$\Lambda\bar{\Lambda} + \pi^+\pi^-K^+K^- \pi^0$	$18.26 \pm 4.68 \pm 3.11$		
$\Lambda\bar{\Lambda} + \pi^+\pi^- p\bar{p} \ \pi^0$	$5.85 \pm 2.35 \pm 0.99$		
$\Lambda\bar{\Lambda} + 3(\pi^+\pi^-) \pi^0$	$52.83 \pm 8.93 \pm 9.07$	$23.35 \pm 5.97 \pm 4.02$	$0.44 \pm 0.14 \pm 0.05$
$\Lambda\bar{\Lambda} + 2(\pi^+\pi^-)K^+K^- \pi^0$	$31.78 \pm 9.35 \pm 5.54$	$30.70 \pm 8.60 \pm 5.36$	$0.97 \pm 0.39 \pm 0.12$
$\Lambda\bar{\Lambda} + 2(\pi^+\pi^-)p\bar{p}\ \pi^0$	$15.95 \pm 5.81 \pm 2.76$		

Study of hyperon anti-hyperon mass

Significance of near-thresold enhancement (with Kolmogorov test)

Search for H⁰ dibaryon

arXiv:1302.4028

Y(nS) can produce **bound baryon-baryon states** high yield of low momentum Λ . Near threshold enhancement in some channels \rightarrow can the H⁰ be produced also?

Search for H⁰ dibaryon

arXiv:1302.4028

$\Upsilon(5S) \rightarrow \Upsilon(1D) \pi^+ \pi^-$

• First and only one *L*=2 state found in radiative decay chain CLEO(2004):

 $\Upsilon(3S) \rightarrow \chi_{b}(2P)\gamma \rightarrow \Upsilon(1D)\gamma\gamma \rightarrow \chi_{b}(1P)\gamma\gamma\gamma \rightarrow \Upsilon(1S)\gamma\gamma\gamma\gamma$

• Belle measured a new production chain $\Upsilon(5S) \rightarrow \Upsilon(1D)\pi^+\pi^- \rightarrow \chi_b(1P)\gamma\pi^+\pi^- \rightarrow \Upsilon(1S)\gamma\gamma\pi^+\pi^-$

 $\begin{array}{l} M_{Y(1D)} = 10164.7 \pm 1.4 \pm 1.0 \ MeV/c^2 \\ CLEO: \ 10161.1 \pm 0.6 \pm 1.6 \ MeV/c^2 \\ BaBar: \ 10164.5 \pm 0.5 \pm 0.8 \ MeV/c^2 \end{array}$

 $M_{Y(2S)}\text{=}10023.2\pm1.0~\text{MeV/c}^2~\text{PDG:}~10023.6\pm0.3$

• Three Y(1D) states are predicted L=2, S=1: J=1,2,3

- We assume production of $\Upsilon_{\rm J}(1D)$ ~ (2J+1), i.e. 3:5:7
- Using BF(Y_J(1D) $\rightarrow \chi_{bi}\gamma$) from PRD 38, 279 (1998) and PDG for BF($\chi_{bi}\rightarrow$ Y(1S) γ); we obtain N(Y_J(1D)) 10%:49%:41%.
- We fit mass distribution with two Gaussian peaks.

Splitting between J=2 & J=3, $\Delta M < 10 \text{ MeV} 90\% \text{ CL}$ Potential model expectations: 4-11 MeV

Events/ 5 Me/

Summary

• $\Upsilon(2S) \rightarrow \gamma b\overline{b}$

No signal found similar to Dobbs et.al. $B(\Upsilon(2S) \rightarrow X_{bb}(9975)\gamma) B(X_{bb}(9975) \rightarrow hadrons) < 4.9 \ 10^{-6}$ $B(\Upsilon(2S) \rightarrow \eta_b(1S)\gamma) B(\eta_b(1S) \rightarrow hadrons) < 3.7 \ 10^{-6}$

 Y(1,2S) → hyperon anti-hyperon + hadrons First observation of these type decays. Threshold enchantment in baryon anti-baryon invariant mass.

•Υ(5S) → Υ(1D) π⁺π⁻

 $M_{\rm Y1D}{=}10164.7\pm1.4\pm1.0$ MeV/c² splitting between J=2 and J=3, ΔM < 10 MeV @ 90% CL

Back up

 $\Upsilon(2S) \rightarrow \gamma b \underline{b}$ selection

- More variables exploited to suppress backgrounds :
 - ΔE

```
E^*_{\Upsilon(2S)} - E_{CM}
should peak around 0.
[\Delta E > -0.04 \text{ GeV } \& \Delta E < 0.05 \text{ GeV}]
```

```
• P*<sub>Y(2S)</sub>
```

momentum of the $\Upsilon(2S)$ candidate in the center-of-mass.

should peak around 0.

$$[P_{Y(2S)}^* < 0.03 \text{ GeV/c}]$$

• θ_{γ(bb)}

Angle between γ candidate and $(b\overline{b})$ in the CM Frame.

```
should peak around 180<sup>0</sup>.
```

 $[\theta_{\gamma(bb)} > 150^{\circ}]$

- Cut values obtained from optimization (assuming S. Dobbs et. al. B. F.)
- Multiple Candidates found at this stage is 8-10%.
- Energy-Momentum constrained kinematic fit (4C) is used to improve the resolution as well as for the best candidate selection.

Bottomonia transitions via η meson

• Measurement of bottomonia transitions via η meson is important to test its quark structure.

• QCD multipole expansion model Kuang Front.Phys.China 1, 19 (2006) predicts suppression transitions between bottomonia via η meson with respect to di-pion.

• The measured widths for Y(4S) and Y(2S) to Y(1S) η differ from model predictions:

- $Y(2S) \rightarrow Y(1S)\eta$ is about $\frac{1}{2}$ than expected
- Y(4S) \rightarrow Y(1S) η is 2.5 larger than Y(4S) \rightarrow Y(1S) $\pi^+\pi^-$ (orders of magnitude large than theory)
- New information on this process is crucial.

Observation of $\Upsilon(5S) \rightarrow \Upsilon(1,2S)\eta$

2

0.3

0.4

0.5

0.6

0.7

0.8

M(γγ), GeV

- Three modes:
 - Υ(1,2S)[μ⁺μ⁻] η[π⁺π⁻π⁰]
 - Υ(2S)[Υ(1S)π⁺π⁻] η[γγ]
 - Υ(1S)[μ⁺μ⁻] η'[ηπ⁺π⁻]

B[Υ(5S)→Υ(1S)η] = (7.3±1.6±0.8) 10⁻⁴ B[Υ(5S)→Υ(2S)η] = (38 ± 4 ± 5) 10⁻⁴ B[Υ(5S)→Υ(1S)η'] < 1.2 10⁻⁴

PRD 87, 011104(R) (2013)

$B[Y(2S) \rightarrow Y(1S)\eta] = (3.28 \pm 0.37 \pm 0.35) \ 10^{-4}$ $B[Y(2S) \rightarrow Y(1S)\pi^{0}] < 4.3 \ 10^{-5}$ $B[Y(2S) \rightarrow Y(1S)\eta] = (2.39 \pm 0.31 \pm 0.14) \ 10^{-4}$

BELLE

 $\Upsilon(2S) \rightarrow \Upsilon(1S)\eta$

 $B[Y(3S) \rightarrow Y(1S)\eta] < 1.0 \ 10^{-4}$

Observation of $h_b \rightarrow \eta_b(1S) \gamma$

M [η_b(1S)] = 9402.4 ± 1.5 ± 1.8 MeV/c² Γ[η_b(1S)] = 10.8^{+4.0+4.5}_{-3.7-2.0} MeV potential models : Γ = 5 – 20 MeV B[h_b(1P)→η_b(1S)γ] = (49.2 ± 5.7 ^{+5.6}_{-3.3}) % Godfrey & Rosner : BF = 41%

Evidence of $h_b \rightarrow \eta_b(2S) \gamma$

PRL 109, 232002 (2012)

Belle value (%)

 $49.2 \pm 5.7^{+5.6}$

 $22.3 \pm 3.8^{+3.2}$

 $47.5 \pm 10.5^{+9.8}$

Branching Fraction

 $h_{\rm b}(1P) \rightarrow \gamma \eta_{\rm b}(1S)$

 $h_b(2P) \rightarrow \gamma \eta_b(1S)$

 $h_{\rm b}(2P) \rightarrow \gamma \eta_{\rm b}(2S)$

M [η_b(2S)] = 99999.0 ± 3.5^{+2.8}_{-1.9} MeV/c² Γ[η_b(2S)] = 10.8^{+4.0+4.5}_{-3.7-2.0} MeV B[h_b(2P)→η_b(2S)γ] = (47.5 ± 10.5 ^{+6.8}_{-7.7}) % ΔM_{HF} [η_b(2S)] = 24.3^{+4.0}_{-4.5} MeV/c²

 $\Delta M_{HF} = 23.5 \pm 4.7 \text{ MeV}$

Lattice Meinel PRD82,114502(2010)

$\Upsilon(1,2S) \rightarrow \text{light hadrons}$

$$Q_{\psi} = \frac{\mathcal{B}_{\psi(2S) \to \text{hadrons}}}{\mathcal{B}_{J/\psi \to \text{hadrons}}} = \frac{\mathcal{B}_{\psi(2S) \to e^+e^-}}{\mathcal{B}_{J/\psi \to e^+e^-}} \approx 12\%$$

12% rule in charmonium: violated in some VT and VP final states ($\rho\pi$ puzle)

$$Q_{\Upsilon} = \frac{\mathcal{B}_{\Upsilon(2S) \to \text{hadrons}}}{\mathcal{B}_{\Upsilon(1S) \to \text{hadrons}}} = \frac{\mathcal{B}_{\Upsilon(2S) \to e^+e^-}}{\mathcal{B}_{\Upsilon(1S) \to e^+e^-}} = 0.77 \pm 0.07 \quad \text{From pertrubtive QCD, to be tested}$$

Full reconstruction of 10 decay channels (5 with observation):

3-body decays, 2-body Vector-Tensor & Axial-Pseudoscalar

Channel	$\Upsilon(1S)$							3				
	N^{sig}	$N_{\rm sig}^{ m UP}$	Σ	В	$\mathcal{B}^{\mathrm{UP}}$	N^{sig}	$N_{\rm sig}^{\rm UP}$	Σ	B	$\mathcal{B}^{\mathrm{UP}}$	Q_{Υ}	$Q^{\mathrm{UP}}_{\Upsilon}$
ϕK^+K^-	56.3 ± 9.0		8.6	$2.36 \pm 0.38 \pm 0.29$		69 ± 36		6.5	$1.86 \pm 0.96 \pm 0.21$		$0.79 \pm 0.54 \pm 0.13$	
$\omega \pi^+ \pi^-$	63.6 ± 9.5		8.5	$4.46 \pm 0.67 \pm 0.72$		29 ± 12	51	2.5	$1.32 \pm 0.54 \pm 0.45$	2.58	$0.30 \pm 0.13 \pm 0.11$	0.55
$K^{*0}K^{-}\pi^{+}$	173 ± 20		11	$4.42 \pm 0.50 \pm 0.58$		135 ± 23		6.4	$2.32 \pm 0.40 \pm 0.54$		$0.52 \pm 0.11 \pm 0.14$	
$\phi f'_2$	6.9 ± 3.9	15	2.1	$0.64 \pm 0.37 \pm 0.14$	1.63	8.3 ± 6.0	18	1.6	$0.50 \pm 0.36 \pm 0.19$	1.33	$0.77 \pm 0.70 \pm 0.33$	2.54
ωf_2	5.2 ± 4.0	13	1.5	$0.57 \pm 0.44 \pm 0.13$	1.79	-0.4 ± 3.3	6.1		$-0.03\pm 0.24\pm 0.01$	0.57	$-0.06 \pm 0.42 \pm 0.02$	1.22
ρa_2	29 ± 11	49	2.7	$1.15 \pm 0.47 \pm 0.18$	2.24	10 ± 11	30	0.9	$0.27 \pm 0.28 \pm 0.14$	0.88	$0.23 \pm 0.26 \pm 0.12$	0.82
$K^{*0}\bar{K}_{2}^{*0}$	42.2 ± 9.5		5.4	$3.02 \pm 0.68 \pm 0.34$		32 ± 11		3.3	$1.53 \pm 0.52 \pm 0.19$		$0.50 \pm 0.21 \pm 0.07$	
$K_1(1270)^+K^-$	3.7 ± 4.9	13	0.8	$0.54 \pm 0.72 \pm 0.21$	2.41	11.0 ± 4.4	26	1.2	$1.06 \pm 0.42 \pm 0.32$	3.22	$1.96 \pm 2.71 \pm 0.84$	4.73
$K_1(1400)^+K^-$	23.8 ± 8.2		3.3	$1.02 \pm 0.35 \pm 0.22$		9.2 ± 8.2	24	0.5	$0.26 \pm 0.23 \pm 0.09$	0.83	$0.26 \pm 0.25 \pm 0.10$	0.77
$b_1(1235)^+\pi^-$	14.4 ± 6.9	28	2.4	$0.47 \pm 0.22 \pm 0.13$	1.25	1.2 ± 3.5	13	0.2	$0.02 \pm 0.07 \pm 0.01$	0.40	$0.05 \pm 0.16 \pm 0.03$	0.35

PRD 86, 031102(R) (2012)

$\Upsilon(1,2S) \rightarrow \text{light hadrons}$

Y(1,2S) decays to K_SK⁺ π^- , $\pi^+\pi^-\pi^0\pi^0$, $\pi^+\pi^-\pi^0$ and 2-body VP (K*K, $\omega\pi^0$, $\rho\pi$)

Channel	$\Upsilon(1S)$					$\Upsilon(2S)$								
	$N_{\rm sig}$	$N_{\rm sig}^{\rm UL}$	ε	Σ	B	\mathcal{B}^{UL}	$N^{ m sig}$	$N_{\rm sig}^{\rm UL}$	ε	Σ	В	\mathcal{B}^{UL}	Q_{Υ}	Q_{Υ}^{UL}
$K_{S}^{0}K^{+}\pi^{-}$	37.2 ± 7.6		22.96	6.2	$1.59 \pm 0.33 \pm 0.1$	18 —	39.5 ± 10.3		21.88	4.0	$1.14 \pm 0.30 \pm 0.13$		$0.72 \pm 0.24 \pm 0.09$	
$\pi^{+}\pi^{-}\pi^{0}\pi^{0}$	143.2 ± 22.4		11.20	7.1	$12.8 \pm 2.01 \pm 2.2$	27 —	260.7 ± 37.2		12.98	7.4	$13.0 \pm 1.86 \pm 2.08$		$1.01 \pm 0.22 \pm 0.23$	
$\pi^{+}\pi^{-}\pi^{0}$	25.5 ± 8.6		11.86	3.4	$2.14 \pm 0.72 \pm 0.3$	34 -	-2.1 ± 9.5	15	13.19		$-0.10 \pm 0.46 \pm 0.02$	0.80	$-0.05\pm 0.21\pm 0.02$	0.42
$K^{*}(892)^{0}\bar{K}^{0}$	16.1 ± 4.7	_	16.23	4.4	$2.92 \pm 0.85 \pm 0.3$	37 —	14.7 ± 6.0	30	15.59	2.7	$1.79 \pm 0.73 \pm 0.30$	4.22	$0.61 \pm 0.31 \pm 0.12$	1.20
$K^{*}(892)^{-}K^{+}$	2.0 ± 1.9	6.3	18.92	1.3	$0.31 \pm 0.30 \pm 0.0$	04 1.11	5.7 ± 3.4	13	18.77	2.0	$0.58 \pm 0.35 \pm 0.09$	1.45	$1.87 \pm 2.12 \pm 0.33$	5.52
$\omega \pi^0$	2.5 ± 2.1	6.8	2.11	1.6	$1.32 \pm 1.11 \pm 0.1$	14 3.90	0.1 ± 2.2	4.6	2.32	0.1	$0.03 \pm 0.68 \pm 0.01$	1.63	$0.02 \pm 0.50 \pm 0.01$	1.68
$\rho\pi$	11.3 ± 5.9	22	6.41	2.2	$1.75 \pm 0.91 \pm 0.2$	$28 \ 3.68$	-1.4 ± 8.6	14	8.66	_	$-0.11 \pm 0.64 \pm 0.03$	1.16	$-0.06 \pm 0.38 \pm 0.02$	0.94

arXiv:1305.5887

$\Upsilon(1,2S) \rightarrow$ hyperon anti-hyperon + hadrons

Aim:

Search for AA + long living particles Caveat: Conservation of Charge, B and S

- → pp, K⁺K⁻, π⁺π⁻ pairs only
- → the distribution of # of charged tracks per event suggests to investigate the states with
 - → 4 + 2 tracks (3 channels)
 - → 4 + 4 tracks (6 channels)
 - → 4 + 6 tracks (10 channels)

Samples for the analisys:

- Y(1,2S) full sample (~5.7/fb @1S, ~24/fb @2S)
- Individual signal MC samples (50k evts. each)
- 10 M evts of Generic Y(1S) → Λ+X MC
- Continuum sample from data under Y(4S) collected in exp > 31: 74/fb

Theoretical predictions:

- No theoretical paper available
- Prediction can be made with Pythia
 - → 115 M of generic Y(1S) decay

