

Measurement of Cosmic Rays with the AMS-02 detector on the ISS

Melanie Heil, KIT On behalf of the AMS Collaboration

@EPS HEP 2013 Stockholm

AMS: international collaboration of > 15 countries, 56 institutes, 500 physicists

Physics of AMS

- Measure cosmic rays with unpreceded precision up to TeV energies → help improve knowledge of cosmic ray transport (e.g. from B/C ratio)
- Search for the origin of Dark Matter:

Collision of Cosmic Rays produce e+ ... Annihilation of Dark Matter will produce additional e+ These characteristics of additional e+ can be measured very accurately by AMS

- Antimatter
- Strangelets and new physics

The AMS-02 detector

Transition Radiation Detector (TRD)

Identifies Positrons, Electrons by transition radiation and Nuclei by dE/dX

20 Layers each consisting of:

- 22 mm fibre fleece
- Ø 6 mm straw tubes filled with Xe/CO₂

The Tracker

There are 9 planes with 200,000 channels aligned to 3 microns

Ring Imaging Cherenkov (RICH)

10,880 photosensors to identify nuclei and their energy

2 different radiators:

- NaF: n = 1.34
- Aerogel: $n \sim 1.04$

Operation on the ISS

AMS **Operations**

Ku-Band High Rate (down): Events <10Mbit/s>

AMS Payload Operations Control and Science Operations Centers (POCC, SOC) at CERN

Ground Operations 💉

S-Band Low Rate (up & down): Commanding: 1 Kbit/s Monitoring: 30 Kbit/s

White Sands Ground Terminal, New Mexico

AMS Computers at Marshall Space Flight Center

Thermal variables:

- ISS beta angle ullet
- ullet
- ISS Radiator positions ISS attitude changes ullet(primarily for visiting vehicles)

ocking

Thermal variables:

- ISS beta angle
- ISS Radiator positions
- ISS attitude changes (primarily for visiting vehicles)

Shuttle docking

Measurement

PRL 110, 141102 (2013) (with 18 month of data \rightarrow only 8% of total expected data!)

Flux and Ratio Determination

• K_n is the **kinetic energy per nucleon**, it is measured by TOF and RICH (beta) and by Tracker (rigidity)

 \bullet or K_n is the \boldsymbol{energy} of electrons/positrons measured by ECAL

Flux and Ratio Determination

• K_n is the **kinetic energy per nucleon**, it is measured by TOF and RICH (beta) and by Tracker (rigidity)

• or K_n is the **energy** of electrons/positrons measured by ECAL

Particle identification

Need to reconstruct magnitude and sign of charge and determine kin. Energy:

particle identificiation: main background for positrons

main backgrounds:

- wrong identified protons
 - → TRD & ECAL

- charge confused electrons
 - → Tracker & ECAL

particle identification with TRD

TRD estimator = $-\ln(P_e/(P_e + P_p))$

particle identificiation with ECAL

Ecal discriminator : Boosted Decision Tree

Positron fraction measurement: particle identification

- TRD estimator
- EcalBDT
- E/R

- all combinations have been tested
- consecutive cuts,
- cuts on 2 variables + template fit,
- cut on one variable + 2D template fit

Positron fraction measurement: particle identification

• Example: cuts on EcalBDT and E/R + fit in TRD estimator

Positron fraction measurement: official analysis

Official analysis: cut on EcalBDT + 2D- Fit in [TRD estimator – E/R] plane

- charge confusion can be determined simultaneously

- results of the fit: in the signal region only 1 % of protons

Positron fraction measurement: systematic errors

- Acceptance asymmetry: (minute Tracker asymmetries)
- Selection dependence: (choice of working point)

- Bin-to-bin migration (folding of measured spectra with ECAL energy resolution)
- Reference spectra (definition of reference spectra from finite statistics)
- Charge confusion: (large angle scattering and secondary tracks)

- data shows decrease up to ~ 7 GeV
- above 7 GeV the positron fraction increases steadily
- No significant spectral features observed

 data can approximately be described with a simple model of individual background power laws (regular cosmic ray fluxes) and a common power law with a cut-off energy for an additional source

• AMS-02 extended the energy range by about factor 2 already!

Positron fraction

• Slope decreases by an order of magnitude form 20 GeV to 250 GeV!

positron anisotropy with AMS

Selected events are grouped into 5 cumulative energy bins: 16-350, 25-350, 40-350, 65-350 and 100-350 GeV

Their arrival directions are used to build sky maps in galactic coordinates, (*b*,*l*), containing the number of observed positrons and electrons North Galactic Pole

positron anisotropy with AMS

The relative fluctuations of the positron ratio, e⁺/e⁻, across the observed sky map show no evident pattern

The coefficients of the multipole expansion are found consistent with the expectations from isotropy → upper limits are obtained:

δ <0.030 for 16<E<350GeV

Conclusions

- AMS-02 has been taken cosmic ray data for over 2 years now
- Operation in space needs extensive monitoring and leads to multiple timedependent calibrations
- First measurement presented on 3rd of April 2013:
 - → positron fraction from 0.5-350 GeV
 - → positron anisotropy: upper limit δ < 0.030 @ 95% CL
- Preliminary measurements presented at ICRC on 8th of July (see www.ams02.org):

- → All electron (e⁻+e⁺) flux from 0.5-700 GeV
- Separate electron and positron flux (1-500 GeV and 1-300 GeV)
- → Proton flux from 1 GV 1.8 GV
- → Helium flux from 2 GV 3.2 TV
- → B/C ratio from 0.5 670 GeV/n
- Analyses will be refined/extended and further analyses will follow with more data \rightarrow only 10 % of total expected data recorded yet!

Back-up

TRD performance on ISS

Data from ISS: Proton rejection using the ECAL

AMS Result: Measurement of the positron fraction

	Positron events, positron fraction in each energy bin				Systematic Errors					~
	Energy [GeV]	N _{e+}	Fraction	statistical error	acceptance asymmetry	event selection	bin-to-bin migration	reference spectra	charge confusion	total systematic uncertainty
	Energy[GeV]	N_{e^+}	Fraction	$\sigma_{stat.}$	$\sigma_{acc.}$	$\sigma_{sel.}$	$\sigma_{mig.}$	$\sigma_{ref.}$	$\sigma_{c.c.}$	$\sigma_{syst.}$
_	1.00-1.21	9335	0.0842	0.0008	0.0005	0.0009	0.0008	0.0001	0.0005	0.0014
	1.97-2.28	23893	0.0642	0.0004	0.0002	0.0005	0.0002	0.0001	0.0002	0.0006
	3.30-3.70	20707	0.0550	0.0004	0.0001	0.0003	0.0000	0.0001	0.0002	0.0004
	6.56-7.16	13153	0.0510	0.0004	0.0001	0.0000	0.0000	0.0001	0.0002	0.0002
	09.95-10.73	7161	0.0519	0.0006	0.0001	0.0000	0.0000	0.0001	0.0002	0.0002
	19.37-20.54	2322	0.0634	0.0013	0.0001	0.0001	0.0000	0.0001	0.0002	0.0003
	30.45-32.10	1094	0.0701	0.0022	0.0001	0.0002	0.0000	0.0001	0.0003	0.0004
	40.00-43.39	976	0.0802	0.0026	0.0002	0.0005	0.0000	0.0001	0.0004	0.0007
	50.87-54.98	605	0.0891	0.0038	0.0002	0.0006	0.0000	0.0001	0.0004	0.0008
	64.03-69.00	392	0.0978	0.0050	0.0002	0.0010	0.0000	0.0002	0.0007	0.0013
	74.30-80.00	276	0.0985	0.0062	0.0002	0.0010	0.0000	0.0002	0.0010	0.0014
	86.00-92.50	240	0.1120	0.0075	0.0002	0.0010	0.0000	0.0003	0.0011	0.0015
	100.0-115.1	304	0.1118	0.0066	0.0002	0.0015	0.0000	0.0003	0.0015	0.0022
	115.1-132.1	223	0.1142	0.0080	0.0002	0.0019	0.0000	0.0004	0.0019	0.0027
	132.1-151.5	156	0.1215	0.0100	0.0002	0.0021	0.0000	0.0005	0.0024	0.0032
	151.5-173.5	144	0.1364	0.0121	0.0002	0.0026	0.0000	0.0006	0.0045	0.0052
	173.5-206.0	134	0.1485	0.0133	0.0002	0.0031	0.0000	0.0009	0.0050	0.0060
	206.0-260.0	101	0.1530	0.0160	0.0003	0.0031	0.0000	0.0013	0.0095	0.0101
	260.0-350.0	72	0.1550	0.0200	0.0003	0.0056	0.0000	0.0018	0.0140	0.0152

The coefficients of the angular power spectrum of the fluctuations, C, are

defined as:

$$\mathbf{C}_\ell = rac{1}{2\ell+1}\sum_{\mathbf{m}=-\ell}^\ell \mathbf{a}_{\ell\mathbf{m}}^{\mathbf{2}}$$

the dipole anisotropy parameter:

$$\delta = 3\sqrt{rac{\mathbf{C_1}}{4\pi}}$$

