Flow in proton-nucleus collisions at 5 TeV
Manifestation of flow:

Particle spectra affected by radial flow

\[\frac{d\text{n}}{d\text{pt} d\text{y}} \]

\(\pi^{-}, K^{-}, \bar{p}, \Lambda \)

hydrodynamics (solid)
string decay (dotted)

\[\langle p_{t} \rangle, \quad \text{lambda/K increase} \]
Ridges & flow harmonics

Ridges appear in

\[R = \frac{1}{N_{\text{trigg}}} \frac{d\eta}{d\Delta\phi d\Delta\eta} \]

due to initial azimuthal anisotropies

(longitudinally invariant)
pPb data, interpreted in terms of hydrodynamic flow

Models:

analysis of pPb@5TeV

- Glauber model (wounded nucleon model) initial conditions
- Viscous hydrodynamic expansion, $\eta/s = 0.08$ or 0.16
- Statistical hadronization using “Terminator”
A. Bzdak, B. Schenke, P. Tribedy, R. Venugopalan, arXiv:1304.3403

- Theoretical study of flow in pp, pA, dA
- Glauber model or Color Glass Condensate initial conditions
- Viscous hydrodynamic expansion, $\eta/s = 0.08$
EPOS3, B. Guiot, Y. Karpenko, T. Pierog, K. Werner

- Initial conditions:
 Gribov-Regge multiple scattering approach, elementary object = Pomeron = parton ladder, using saturation scale $Q_s \propto N_{part} \hat{s}^\lambda$

- Core-corona approach
 to separate fluid and jet hadrons

- Viscous hydrodynamic expansion, $\eta/s = 0.08$

- Statistical hadronization, final state hadronic cascade

EPOS3 will be used in the following
EPOS IC: Marriage pQCD+GRT+energy sharing
(Drescher, Hladik, Ostapchenko, Pierog, and Werner, Phys. Rept. 350, 2001)

\[\sigma^{\text{tot}} = \sum_{\text{cut}} \int \sum_{\text{uncut}} \int \]

\[\text{cut Pom : } G = \frac{1}{2\hat{s}} 2\text{Im} \{ \mathcal{F} \mathcal{T} \{ T \} \}(\hat{s}, b), \quad T = i\hat{s} \sigma_{\text{hard}}(\hat{s}) \exp(R_{\text{hard}}^2 t) \]

Nonlinear effects considered via saturation scale \(Q_s \propto N_{\text{part}} \hat{s}^\lambda \)
\[\sigma^\text{tot} = \int d^2 b \int \prod_{i=1}^{A} d^2 b_i^A \ d z_i^A \ \rho_A(\sqrt{(b_i^A)^2 + (z_i^A)^2}) \]

\[\prod_{j=1}^{B} d^2 b_j^B \ d z_j^B \ \rho_B(\sqrt{(b_j^B)^2 + (z_j^B)^2}) \]

\[\sum_{m_1 l_1} \ldots \sum_{m_{AB} l_{AB}} \ (1 - \delta_0 \Sigma m_k) \ \int \prod_{k=1}^{A B} \left(\prod_{\mu = 1}^{m_k} d x_{k,\mu}^+ d x_{k,\mu}^- \prod_{\lambda = 1}^{l_k} d \tilde{x}_{k,\lambda}^+ d \tilde{x}_{k,\lambda}^- \right) \left\{ \right. \]

\[\left. \prod_{k=1}^{A B} \left(\frac{1}{m_k!} \frac{1}{l_k!} \sum_{\mu = 1}^{m_k} G(x_{k,\mu}^+, x_{k,\mu}^-, s, |\vec{b} + \vec{b}_A^{\pi(k)} - \vec{b}_B^{\tau(k)}|) \right) \right. \]

\[\left. \prod_{\lambda = 1}^{l_k} -G(\tilde{x}_{k,\lambda}^+, \tilde{x}_{k,\lambda}^-, s, |\vec{b} + \vec{b}_A^{\pi(k)} - \vec{b}_B^{\tau(k)}|) \right) \]

\[\prod_{i=1}^{A} \left(1 - \sum_{\pi(k)=i} x_{k,\mu}^+ - \sum_{\pi(k)=i} \tilde{x}_{k,\lambda}^+ \right) \alpha \prod_{j=1}^{B} \left(1 - \sum_{\tau(k)=j} x_{k,\mu}^- - \sum_{\tau(k)=j} \tilde{x}_{k,\lambda}^- \right) \]
The hydrodynamic equations (Israel-Stewart formulation) in arbitrary coordinate system (implemented/solved by Yuri Karpenko), always $\eta/S = 0.08$, $\zeta/S = 0$

\[
\begin{align*}
\partial_{;\nu} T^{\mu\nu} &= \partial_\nu T^{\mu\nu} + \Gamma^\mu_{\nu\lambda} T^{\nu\lambda} + \Gamma^\nu_{\nu\lambda} T^{\mu\lambda} = 0 \\
\gamma (\partial_t + v_i \partial_i) \pi^{\mu\nu} &= -\frac{\pi^{\mu\nu} - \pi^{\mu\nu}_{NS}}{\pi} + I^{\mu\nu} \\
\gamma (\partial_t + v_i \partial_i) \Pi &= -\frac{\Pi - \Pi_{NS}}{\Pi} + I_{\Pi}
\end{align*}
\]

- $T^{\mu\nu} = \epsilon u^{\mu} u^{\nu} - (p + \Pi) \Delta^{\mu\nu} + \pi^{\mu\nu}$.
- $\partial_{;\nu}$ denotes a covariant derivative,
- $\Delta^{\mu\nu} = g^{\mu\nu} - u^{\mu} u^{\nu}$ is the projector orthogonal to u^μ,
- $\pi^{\mu\nu}$ and Π are the shear stress tensor and bulk pressure, respectively.

- $\pi^{\mu\nu}_{NS} = \eta(\Delta^{\mu\lambda} \partial_{;\lambda} u^{\nu} + \Delta^{\nu\lambda} \partial_{;\lambda} u^{\mu}) - \frac{2}{3} \eta \Delta^{\mu\nu} \partial_{;\lambda} u^{\lambda}$
- $\Pi_{NS} = -\zeta \partial_{;\lambda} u^{\lambda}$
- $I^{\mu\nu} = -\frac{4}{3} \pi^{\mu\nu} \partial_{;\gamma} u^{\gamma} - [u^{\nu} \pi^{\mu\beta} + u^{\mu} \pi^{\nu\beta}] u^{\lambda} \partial_{;\lambda} u_{\beta}$
- $I_{\Pi} = -\frac{4}{3} \Pi \partial_{;\gamma} u^{\gamma}$
EPOS3:

Pomeron \rightarrow parton ladder \rightarrow flux tube (kinky string)

String segments with high pt escape \Rightarrow corona, the others form the core = initial condition for hydro depending on the local string density
CMS: Multiplicity dependence of pion, kaon, proton pt spectra
CMS, arXiv:1307.3442

We plot 4 “centrality” classes:

\[<N_{\text{tracks}}>=8, 84, 160, 235\text{ (in }|\eta|<2.4)\]

Multiplicity = centrality measure
in EPOS: high multiplicity = many Pomerons

Data compared to

- EPOS3 (hydrodynamic expansion, flow)
- QGSJETII (no flow effects, only string decay)
Pions

\(<\text{N_tracks}> = 8, 84, 160, 235, \text{ from bottom to top, curves shifted by 0.9 spectra normalized to unity, lines = theory}\)

Little change with <N_tracks> for pions
Kaons

\[<N_{\text{tracks}} > = 8, 84, 160, 235, \text{ from bottom to top, curves shifted by 0.9} \]

spectra normalized to unity, lines = theory

Kaons spectra change significantly with \(<N_{\text{tracks}} > \) in EPOS3: more and more flow contribution
Protons

\(<N_{\text{tracks}}> = 8, 84, 160, 235, \text{ from bottom to top}, \text{ curves shifted by 0.9}
spectra normalized to unity, lines } = \text{ theory}

Strong variation of proton spectra

=> flow helps
ALICE: compare pt spectra for identified particles in different multiplicity classes: 0-5%, ..., 60-80%

(in $2.8 < \eta_{\text{lab}} < 5.1$)

R. Preghenella, ALICE, talk Trento workshop 2013

Useful: ratios (K/π, p/π...)

Significant variation of lambda/K – like in PbPb
K/π

High multiplicity (0-5%, red), low multiplicity (60-80%, green)

lines = theory, points = data

No multiplicity dependence

not trivial to get the peripheral right!!
Significant multiplicity dependence

in EPOS, flow already affects the low multiplicity case

"flow peak" around 2-3 GeV/c, beyond 5 GeV/c corona (minjets) dominate
High multiplicity (0-5%, red), low multiplicity (60-80%, green)

Significant multiplicity dependence

again, flow already needed for low multiplicity (even in pp!)

flow dominates 2-5 GeV/c
“Ridges” in pA

\[2 < p_{T,\text{trigg}} < 4 \text{ GeV/c} \]
\[p_{T,\text{assoc}} < 2 \text{ GeV/c} \]

p-Pb | \(s_{NN} = 5.02 \text{ TeV} \)

0-20%
Central - peripheral (to get rid of jets)

Double Ridge

ALICE

EPO3S3.074
Projection

\[\sum 2a_n \cos(n\Delta \phi); \]

\[\Rightarrow v_n = \sqrt{\frac{a_n}{b}} \]
Identified particle v_2

mass splitting, as in PbPb !!!
pPb in EPOS3

Pomerons (number and positions) characterize geometry (P. number \propto multiplicity)

random azimuthal asymmetry

\Rightarrow

asymmetric flow seen at higher pt for heavier ptls

Robust results
v_2 for π, K, p clearly differ

mass splitting, due to flow
different binning:

EPOS3.074

\[v_2(\text{protons}) > v_2(\text{pions}) \text{ beyond } 2\text{GeV} \]
Summary

Analyzing pt-spectra, ratios, and dihadrons correlations for identified hadrons:

- **pPb looks very much like a hydrodynamically expanding system**
 (more clean than PbPb, where hydro and minijets heavily interact, as well as the final hadrons among themselves)
ALICE arXiv:1303.0737