Measurement of Higgs couplings and mass in e⁺e⁻ collisions at 350 GeV, 1.4 TeV and 3 TeV CLIC

> Tomáš Laštovička (IoP AC, Prague) on behalf of the CLIC Detector and Physics Study

EPS HEP 2013

18-24 July 2013 Stockholm, Sweden

CLIC ENVIRONMENT

Center of mass energy	350 GeV	1.4 TeV	3 TeV
Bunch spacing		0.5 ns	
Bunches per train	354	312	312
$\gamma\gamma \rightarrow$ hadrons per BX	0.3	1.3	3.2

- Multi-staged approach
 - 350 GeV stage motivated by better luminosity and sizeable WW fusion cross section.
- CLIC will be operated at room temperature
- 100 MV/m gradient enabling multi-TeV CME
- Effective methods for beam-induced background suppression established
 - 10ns readout window (100ns for HCAL)
 - LHC-style jet reconstruction with FastJet

CLIC DETECTORS

- Two detector concepts: CLIC_SiD and CLIC_ILD
 - Based on SiD and ILD detector concepts for ILC, adapted to CLIC environment.
 - Full simulation and reconstruction of events, beam induced background overlaid.
 - Particle Flow Algorithm calorimetry.

CLIC DETECTORS AND PHYSICS STUDY

http://lcd.web.cern.ch/lcd/Home/MoC.html

Pre-collaboration based on Memorandum of Cooperation (MoC).

CERN acts as a host laboratory.

17 institutes from 14 countries – more contributors are welcome.

HIGGS PRODUCTION AT CLIC

DOUBLE HIGGS AND TTH PRODUCTION AT CLIC

MEASUREMENTS AT 350 GeV (500 fb⁻¹)

- Higgs-strahlung events enable Higgs mass reconstruction from Z recoil mass.
 - Model independent measurement of m_H and g_{HZZ}

Δ(m_H) ≈ 120 MeV

Higgs branching ratio analyses

Measurement	Observable	Stat. precision
σ(HZ) x BR(H→τ⁺τ⁻)	g² _{Hzz} g² _{Hττ} /Γ _H	5.7%
$\sigma(HZ) \times BR(Z \rightarrow I^+I^-)$	g ² _{HZZ}	4.2%
σ(HZ) x BR(H→bb̄)	$g_{HZZ}^2 g_{Hbb}^2 / \Gamma_H$	1% †
σ(HZ) x BR(H→c c)	$g_{Hzz}^2 g_{Hcc}^2 / \Gamma_H$	5% †
$\sigma(HZ) \times BR(H \rightarrow gg)$		6% †
$\sigma(HZ) \times BR(H \rightarrow WW^*)$	$g_{Hzz}^2 g_{HWW}^2 / \Gamma_H$	2% †
σ(Hv⊽) x BR(H→bb)	$g_{HWW}^2 g_{Hbb}^2 / \Gamma_H$	3% †

+ analysis ongoing, result estimated

MEASUREMENTS AT 1.4 TEV (1.5 ab⁻¹)

■ Higgs measurements (mostly) in Hvv channel (279 fb):

Measurement	Observable	Stat. precision	
$\sigma(H\nu\overline{\nu}) \times BR(H \rightarrow \tau^+\tau^-)$	$g_{HWW}^2 g_{H\tau\tau}^2 / \Gamma_H$	3.7%	
σ(Hνν) x BR(H→μ+μ-)	$g^2_{HWW}g^2_{H\mu\mu}/\Gamma_H$	28% (prel.)	
σ(Hv⊽) x BR(H→bb̄)	$g_{HWW}^2 g_{Hbb}^2 / \Gamma_H$	0.3%	
σ(Hv⊽) x BR(H→c c)	$g_{HWW}^2 g_{Hcc}^2 / \Gamma_H$	2.9%	s m
σ(Hv⊽) x BR(H→gg)		1.8%	heal
σ(Hv⊽) x BR(H→γγ)		15% (prel.)	rized
$\sigma(H\nu\overline{\nu}) \ge BR(H\rightarrow Z\gamma)$		tbd	nolar
σ(Hv⊽) x BR(H→ZZ*)	$g_{HWW}^2 g_{HZZ}^2 / \Gamma_H$	3% †	g IIN
$\sigma(Hv\overline{v}) \times BR(H \rightarrow WW^*)$	g ⁴ _{HWW} /Γ _H	1% †	nim
σ(He⁺e⁻) x BR(H→bb̄)	$g_{HZZ}^2 g_{Hbb}^2 / \Gamma_H$	1% †	assi

+ analysis ongoing, result estimated

Δ(m_H) ≈ 40 MeV

Estimated from Higgs mass distribution in H→bb.

MEASUREMENTS AT 3 TEV (2ab⁻¹)

Large Higgs cross section: 479 fb corresponds to 830k Higgses (including beam spectrum)

Measurement	Observable	Stat. precision	
σ(Hv⊽) x BR(H→τ⁺τ⁻)	$g^{2}_{HWW} g^{2}_{H\tau\tau} / \Gamma_{H}$	tbd	
σ(Hνν) x BR(H→μ+μ-)	$g^{2}_{HWW}g^{2}_{H\mu\mu}/\Gamma_{H}$	16%	
σ(Hv⊽) x BR(H→bb̄)	$g_{HWW}^2 g_{Hbb}^2 / \Gamma_H$	0.2%	
σ(Hv⊽) x BR(H→c c)	$g_{HWW}^2 g_{Hcc}^2 / \Gamma_H$	2.7%	Š
σ(Hv⊽) x BR(H→gg)		1.8%	head
σ(Ην⊽) x BR(Η→γγ)		tbd	-ized
σ(Hv⊽) x BR(H→Zγ)		tbd	nolar
σ(Hv⊽) x BR(H→ZZ*)	$g_{HWW}^2 g_{HZZ}^2 / \Gamma_H$	2% †	d I D
$\sigma(Hv\overline{v}) \times BR(H \rightarrow WW^*)$	g ⁴ _{HWW} /Γ _H	0.7% †	lmin
σ(He⁺e⁻) x BR(H→bb̄)	$g_{HZZ}^2 g_{Hbb}^2 / \Gamma_H$	0.7% †	

+ analysis ongoing, result estimated

Δ(m_H) ≈ 33 MeV

Estimated from Higgs mass distribution in $H \rightarrow b\overline{b}$.

DOUBLE HIGGS PRODUCTION AT 1.4 TEV AND 3 TEV

- The HHvv cross section is sensitive to
 - Higgs self-coupling λ
 - Higgs quartic coupling g_{HHWW}
- Small cross section process
 - 0.164 fb (0.63 fb) at 1.4 TeV (3 TeV)
 - Requires large luminosity, large CM Energy

	1.4 TeV	3 TeV
Δ(g _{HHWW})	7% (prel.)	3% (prel.)
Δ(λ)	28%	16%
Δ(λ), P(e⁻) = -80%	21% †	12% †

Results for $m_H = 120$ GeV, analyses for $m_H = 126$ GeV are ongoing.

tth Final State Measurements at 1.4 TeV

- The ttH cross section is sensitive to Top Yukawa coupling g_{ttH}
- The following final states were analysed
 - 6 jets: t(→qqb) t(→lvb) H(→bb)
 Δ(σ(ttH)) ≈ 16% (preliminary)
 unpolarised beams assumed
 - 8 jets: t(→qqb) t(→qqb) H(→bb)

ongoing, expected to be more precise

Yukawa coupling will be extracted from a combined fit to both decay channels.

- The first CLIC stage at Vs = 350 GeV will provide precision measurements of absolute values of various Higgs couplings.
- Running at Vs = 1.4 TeV and Vs = 3 TeV will open door to rare Higgs decays at the top of significantly improving many precision measurements from previous stages.
- High energy CLIC has a potential to pin down the value of trilinear Higgs self-coupling to 10% level.
- A combined fit is being done at CLIC to all measurements at 350 GeV, 350 GeV + 1.4 TeV and 350 GeV + 1.4 TeV + 3 TeV to extract the Higgs couplings and width.