Selected Results from STAR Beam Energy Scan Program

Michal Šumbera
Nuclear Physics Institute AS CR, Řež/Prague
(for the STAR Collaboration)
1) Turn-off of sQGP signatures

2) Search for the signals of phase boundary

3) Search for the QCD critical point

Triggering required effort, but was a solvable problem. Geometric acceptance remains the same, track density gets lower. Detector performance generally improves at lower energies.
STAR TPC - Uniform Acceptance over all RHIC Energies

Au+Au at 7.7 GeV

Au+Au at 39 GeV

Au+Au at 200 GeV

Crucial for all analyses
Selected Results
Suppression of Charged Hadrons ...

\[R_{CP} = \frac{d^2Ndp_T d\eta / \langle N_{bin} \rangle(central)}{d^2Ndp_T d\eta / \langle N_{bin} \rangle(peripheral)} \]
... and its Disappearance

\(R_{CP} \geq 1 \) at lower energies - Cronin effect?
Enhancement vs. QGP suppression

Motivation: Agreement between the simulation and the data at low beam energies and its break down at higher energies could help to find the energy at which QGP becomes dominant.

- In HIJING (jet quenching off) R_{CP} at lower energies is enhanced, but there is no quantitative agreement with charged hadron R_{CP} from data.
- No suppression at higher energies observed, as expected (quenching was turned off).
Proton R_{CP} > pion R_{CP}, similar to d+Au at $\sqrt{s_{NN}}$=200 GeV

\Rightarrow Pions may serve as a better gauge for jet quenching within the p_T range available through particle identification.
R_{CP} : Identified Particles

- Antiproton $R_{CP} < \text{pion } R_{CP}$ for $p_T < 1\text{GeV/c}$
- Pion R_{CP} suppressed for $\sqrt{s_{NN}} \geq 39\text{GeV}$
Azimuthal Anisotropy

\[\frac{dN}{d\phi} \propto \left(1 + 2 \sum_{n=1}^{+\infty} v_n \cos[n(\phi - \Psi_r)] \right) \]

\[v_n = \left\langle \cos(n\phi - \Psi_r) \right\rangle \]

\[\phi = \tan^{-1}\left(\frac{p_x}{p_y} \right) \]

- Directed flow \(v_1 \) is due to the sideward motion of the particles within the reaction plane. It is sensitive to baryon transport, space-momentum correlations and QGP formation.

- Elliptic flow \(v_2 \) results from the interaction among produced particles and is directly related to transport coefficients of produced matter.
Directed Flow of p and π
Directed Flow of p and π: mid-central

Proton v_1 slope: changes sign from positive at 7.7 GeV to negative at 11.5 GeV and remains small negative up to $\sqrt{s_{_{NN}}}=200$ GeV.

Pion and antiproton v_1 slope: always negative.

\Rightarrow For $\sqrt{s_{_{NN}}} \geq 11.5$ GeV contradicts baryon stopping picture predicting opposite slope for protons and pions.

Net-proton v_1 slope: shows double sign change. Can not be explained by URQMD model but is qualitatively consistent with a prediction of hydrodynamic model with a first order phase transition

Δν₂: ν₂(Particles) - ν₂ (Antiparticles)

The difference between particles and anti-particles is observed.
A linear increase $Δν₂ = a \times μ_B$ for all particle species for $7.7 \text{ GeV} \leq \sqrt{s_{NN}} \leq 62.4 \text{ GeV}$. ⇒ The baryon chemical potential is directly connected to the difference in ν₂ between particles and antiparticles.
\(v_2(p_T) \): Transport model comparisons

- Purely hadronic system (UrQMD) does not explain relatively large elliptic flow at these energies.
- AMPT-SM provides the best description of the data (except of protons and anti-protons @ 7.7 GeV).
- In all other cases both AMPT and UrQMD under-predict \(v_2(p_T) \).

AMPT-SM: string melting version
Baryon–meson splitting is observed when collisions energy ≥ 19.6 GeV for both particles and the corresponding anti-particles.

For anti-particles the splitting is almost gone within errors at 11.5 GeV.

NCQ Scaling Test: particles

- Universal trend for most of particles – n_{cq} scaling not broken at low energies
- ϕ meson v_2 deviates from other particles in Au+Au@$(11.5 \& 7.7)$ GeV: ~ 2σ at the highest p_T data point. Needs more data to make clear conclusion.

Reduction of v_2 for ϕ meson and absence of n_{cq} scaling \Rightarrow during the evolution the system remains in the hadronic phase

M. Šumbera
NCQ Scaling Test: antiparticles

![Graph showing the scaling test results for antiparticles across different energies. The graph plots \(v_2/n_q \) versus \((m_T - m_0)/n_q \)](STAR: Phys.Rev. C88, 014902 (2013))
Beam Energy Scan Phase- II
STAR BES Program Summary

Explore QCD Diagram

Large range of \(\mu_B \) in the phase diagram !!!
STAR BES Program Summary

Large range of μ_B in the phase diagram !!!
Summary

★ STAR results from BES program covering large μ_B range provide important constraint on QCD phase diagram:

- R_{CP} of unidentified charged hadrons turns-off near 39 GeV.
- Identified R_{CP} is qualitatively similar and suggests that pions are less affected by (still unquantified) sources of enhancement.
- Proton v_1 slope changes sign between 7.7 GeV and 11.5 GeV.
- Net-proton v_1 slope shows double sign change between 7.7 GeV and 39 GeV.
- Particles-antiparticles v_2 difference increases with decreasing $\sqrt{s_{NN}}$ and is directly connected to baryon chemical potential.
- Baryon–meson splitting is observed when collisions energy ≥ 19.6 GeV for both particles and the corresponding anti-particles.
- ...and many other results not covered in this talk.

★ Search for the critical point continues:

- Proposed BES-II program
- Fixed target proposal to extend μ_B coverage up to 800 MeV
Argonne National Laboratory, Argonne, Illinois 60439
Brookhaven National Laboratory, Upton, New York 11973
University of California, Berkeley, California 94720
University of California, Davis, California 95616
University of California, Los Angeles, California 90095
Universidade Estadual de Campinas, Sao Paulo, Brazil
University of Illinois at Chicago, Chicago, Illinois 60607
Creighton University, Omaha, Nebraska 68178
Czech Technical University in Prague, FNSPE, Prague, 115 19, Czech Republic
Nuclear Physics Institute AS CR, 250 68 Řež/Prague, Czech Republic
University of Frankfurt, Frankfurt, Germany
Institute of Physics, Bhubaneswar 751005, India
Indian Institute of Technology, Mumbai, India
Indiana University, Bloomington, Indiana 47408
Alikhanov Institute for Theoretical and Experimental Physics, Moscow, Russia
University of Jammu, Jammu 180001, India
Joint Institute for Nuclear Research, Dubna 141980, Russia
Kent State University, Kent, Ohio 44242
University of Kentucky, Lexington, Kentucky, 40506-0025
Institute of Modern Physics, Lanzhou, China
Lawrence Berkeley National Laboratory, Berkeley, California 94720
Massachusetts Institute of Technology, Cambridge, MA
Max-Planck-Institut f"ur Physik, Munich, Germany
Michigan State University, East Lansing, Michigan 48824
Moscow Engineering Physics Institute, Moscow Russia
NIKHEF and Utrecht University, Amsterdam, The Netherlands
Ohio State University, Columbus, Ohio 43210
Old Dominion University, Norfolk, VA, 23529
Panjab University, Chandigarh 160014, India
Pennsylvania State University, University Park, Pennsylvania 16802
Institute of High Energy Physics, Protvino, Russia
Purdue University, West Lafayette, Indiana 47907
Pusan National University, Pusan, Republic of Korea
University of Rajasthan, Jaipur 302004, India
Rice University, Houston, Texas 77251
Universidade de Sao Paulo, Sao Paulo, Brazil
University of Science \\& Technology of China, Hefei 230026, China
Dong University, Jinan, Shandong 250100, China
Shanghai Institute of Applied Physics, Shanghai 201800, China
SUBATECH, Nantes, France
Texas A&M University, College Station, Texas 77843
University of Texas, Austin, Texas 78712
University of Houston, Houston, TX, 77204
Tsinghua University, Beijing 100084, China
United States Naval Academy, Annapolis, MD 21402
Valparaiso University, Valparaiso, Indiana 46383
Variable Energy Cyclotron Centre, Kolkata 700064, India
Warsaw University of Technology, Warsaw, Poland
University of Washington, Seattle, Washington 98195
Wayne State University, Detroit, Michigan 48201
Institute of Particle Physics, CNU (HZNU), Wuhan 430079, China
Yale University, New Haven, Connecticut 06520
University of Zagreb, Zagreb, HR-10002, Croatia

M. Šumbera
Backup slides
TPC:
Detects Particles in the $|\eta|<1$ range
π, K, p through dE/dx and TOF
$K^0_s, \Lambda, \Xi, \Omega, \phi$ through invariant mass

Coverage: $0 < \phi < 2\pi$ $|\eta| < 1.0$
Uniform acceptance: All energies and particles
Since the original design of RHIC (1985), running at lower energies has been envisioned.

In 2009 the RHIC PAC approved a proposal to run a series of six energies to search for the critical point and the onset of deconfinement.

These energies were run during the 2010 and 2011 running periods.

A landmark of the QCD phase diagram
Model summary

- HIJING captures beam energy dependence of spectra.
- Jet quenching as modeled in HIJING has a greater effect on higher beam energies.
- For AMPT, lower beam energies are better matched by SM off, while SM on better captures the beam energy dependence.

⇒ Physics of hadronization shifts from coalescence to fragmentation?
NCQ Scaling Quality: particles

M. Šumbera