Resolving the puzzle of the $\gamma \gamma^* \rightarrow \pi^0$ transition form factor

Wolfgang Lucha and Dmitri Melikhov

HEPHY, Vienna & University Vienna & SINP, Moscow State University

We present the analysis of the $F_{P\gamma}(Q^2)$, $P = \pi, \eta, \eta'$ form factors and show that the recent Belle data on $\pi^0 \gamma$ resolves the puzzle posed by the BaBar data on $\pi^0 \gamma$. We discuss implications of these results for pion elastic form factor.

Based on works in collaboration with I. Balakireva and B. Stech

I.Balakireva, W.Lucha, DM, Phys.Rev. **D85** (2012) 036006; DM, B.Stech, Phys.Rev. **D85** (2012) 051901; Phys.Lett. **B718** (2012) [arXiv:1206.5764]; W. Lucha, DM, J.Phys. **G39**, 045003 (2012); Phys.Rev. **D86**, 016001 (2012). The amplitude of $\gamma \gamma^*(Q) \rightarrow P$, $(P = \pi^0, \eta, \eta', \eta_c)$ contains only one form factor:

$$\langle \gamma(q_1)\gamma^*(q_2)|P(p)\rangle = \mathrm{i}\epsilon_{\varepsilon_1\varepsilon_2q_1q_2}F_{P\gamma}(q_1^2=0,q_2^2=-Q^2).$$

QCD factorization theorem predicts for the pion-photon transition form factor

$$Q^2 F_{\pi\gamma}(Q^2) \to \sqrt{2} f_{\pi} \qquad f_{\pi} = 0.130 \text{ GeV}.$$

Similar scaling relations emerge for η and η' after taking into account the mixing effects.

Brodsky, Lepage combined pQCD at large Q^2 with axial anomaly at $Q^2 = 0$ and proposed

$$F_{\pi\gamma}(Q^2) \simeq rac{\sqrt{2}f_{\pi}}{4\pi^2 f_{\pi}^2 + Q^2}.$$

No surprizes were expected, but in 2009 BaBar presented $F_{\pi\gamma}(Q^2)$ at Q^2 up to 40 GeV² [PRD80,052002(2009), 187 cites in INSPIRE]

PUZZLE 1:

The BaBar pion form factor seems more compatible with $Q^2 F_{\pi\gamma}(Q^2) \sim \log(Q^2)$.

QCD factorization theorem seems violated (or at least in danger)

PUZZLE 2:

The η and η' data is not in contradiction with saturation $Q^2F(Q^2) \sim \text{const}$

Why nonstrange components in η , η' and π^0 should behave so much differently?

THEORY:

- **OPE for 3-point function** $\langle VVA \rangle$ **in QCD**
- Quark-hadron duality as a low-energy cut on the spectral representation

$$\pi f_{\pi} F_{\pi\gamma}(Q^2) = \int_{4m^2}^{s_{\text{eff}}(Q^2)} ds \,\rho_{\text{pQCD}}(s,Q^2)$$

Nonperturbative power corrections do not appear explicitly (implicitly hidden is $s_{\text{eff}}(Q^2)$).

The effective threshold :

- $s_{\rm eff}(Q^2)$ for all Q^2 remains bounded in the "soft" region $s_{\rm eff}(Q^2) \sim 0.5 \div 1 {\rm GeV}^2$
- QCD factorization theorem requires $s_{\rm eff}(Q^2 \to \infty) \to 4\pi^2 f_{\pi}^2$

(finding s_{eff} for correlators is equivalent to solving full QCD)

One can calculate s_{eff} **in quantum mechanics:**

For $V(r) = V_{\text{conf}}(r) - \frac{\alpha}{r}$:

(in this case the form factors satisfy factorization theorem like in QCD)

The effective threshold "saturates" at $Q^2 = a$ few GeV².

BaBar'2009 vs Belle'2012

Belle data (i) is fully compatible with factorization (and with η and η' results) and (ii) the corresponding effective threshold is fully compatible with theoretical expectations

Elastic pion form factor:

$$F_{\pi}(Q^2) = F_0(Q^2) + \alpha_s(Q^2)F_1(Q^2) + \dots, \quad F_0(Q^2) \propto 1/Q^4, \quad F_1(Q^2) \propto 1/Q^2$$

Effective threshold:

Elastic pion form factor:

$$F_{\pi}(Q^2) = F_0(Q^2) + \alpha_s(Q^2)F_1(Q^2) + \dots, \quad F_0(Q^2) \propto 1/Q^4, \quad F_1(Q^2) \propto 1/Q^2$$

Effective threshold:

Elastic pion form factor:

$$F_{\pi}(Q^2) = F_0(Q^2) + \alpha_s(Q^2)F_1(Q^2) + \dots, \quad F_0(Q^2) \propto 1/Q^4, \quad F_1(Q^2) \propto 1/Q^2$$

Effective threshold:

Some recent theoretical predictions:

Summary and conclusions

• Meson-photon transition form factors:

The Belle data resolves the puzzle of the $\pi^0 \gamma$ form factor: the results on $\pi^0 \gamma$ from Belle is fully compatible with the results on $\eta \gamma$ and $\eta' \gamma$. Moreover, all three form factors are fully compatible with the pQCD asymptotic formula at $Q^2 \ge 10 - 15$ GeV².

• Pion elastic form factor:

We predict the asymptotic regime for the effective threshold $s_{\text{eff}}(Q^2) = 4\pi^2 f_{\pi}^2$ (NOT for the form factor!) to be reached at $Q^2 \sim 5-6 \text{GeV}^2$. (For the form factor this yields unambiguous predictions for separate contributions in the perturbative expansion). This is testable at JLab.

• Is there still room for violation of factorization?

A better fit to the full set of the meson-photon <u>transition form factors</u> might prefer a small universal logarithmic rise of $Q^2F(Q^2)$. If established experimentally, this rise would mean violation of factorization.