Constraining dark matter capture and annihilation cross sections by searching for neutrino signature from the Earth core

Guey-Lin Lin

National Chiao-Tung University

Taiwan

Based upon work done with Fei-Fan Lee and Yue-Lin Sming Tsai

Outline:

- a. Dark matter capture and annihilation in the Earth core
- b. Calculation of neutrino signal and background event rates
- c. Three scenarios on σ^{SI}_{p} and their implications on constraining $<\sigma v>$
- d. Summary

Capture and annihilation in the Earth core

$$\Gamma_A(t) = \frac{C_c}{2} \tanh^2\left(\frac{t}{\tau_A}\right)$$

 $\Gamma_A(t)$: determines the neutrino flux

 C_c : capture rate depends on σ^{SI}_p and gravitational potential of specific chemical element $\tau_A = 1/\sqrt{C_c C_A}$ equilibrium time scale with the annihilation

coefficient $C_A = \frac{\langle \sigma v \rangle}{V_0} \left(\frac{m_\chi}{20 GeV} \right)^{2/3}$ Hence neutrino flux depends on both σ^{SI}_p and $\langle \sigma v \rangle$ DM induced neutrino flux from the Sun is more sensitive to σ^{SD}_p

General Background

- •Probing $\chi\chi \to v\overline{v}$ from Earth core with IceCube were discussed in I. F. M. Albuquerque, L. J. B. e Silva, and C. P. de los Heros, Phys. Rev. D 85, 123539 (2012), for large DM mass (few hundred GeV to TeV).
- •Probing $\chi\chi \to \tau^+\tau^-$ from Earth Core with IceCube were also discussed in C. Delaunay, P. J. Fox, and G. Perez, J. High Energy Phys.05 (2009) 099 for large DM mass as well.
- •We consider light DM mass as well and include DeepCore capability in our discussions. All possible annihilation channels are discussed.

DM signal and atmospheric background

$$N_{\text{signal}} = \int_{E^{\text{th}}}^{m_{\chi}} \sum_{i,k} \frac{d\Phi_{\nu_{i}}^{\text{DM}}}{dE_{\nu}} A_{\text{eff}}^{i,k}(E_{\nu}) dE_{\nu} d\Omega \qquad \frac{\text{DM signal}}{\sqrt{\text{ATM background}}} = 2.0$$

$$\frac{\text{DM signal}}{\sqrt{\text{ATM background}}} = 2.0$$

$$N_{\text{background}} = \int_{E^{\text{th}}}^{E_{\text{max}}} \sum_{i,k} \frac{d\Phi_{\nu_i}^{\text{ATM}}}{dE_{\nu}} A_{\text{eff}}^{i,k}(E_{\nu}) dE_{\nu} d\Omega$$

2σ detection Significance in 5 years

i: neutrino flavor, k: CC or NC interaction

Calculation done by WIMPSIM M. Blennow, J. Edsjo and T. Ohlsson, JCAP 0801, 021 (2008)

IceCube Effective Areas-Track Events

IceCube Effective Areas-Cascade Events

$\psi_{ ext{max}}$: observation open angle toward the Earth core

 $\psi^c_{ ext{max}}$:
critical value of $\psi_{ ext{max}}$ when $N_{ ext{event}}$ no longer increases

Several resonance peaks for N_{event}

Comparison of small and large m_{χ}

- •For larger m_{χ} , 2 σ significance requires larger $<\sigma v>$
- •Sensitivity for each channel is derived by assuming dominant branching fraction for that particular channel.

Scenario A: Neutrino observation implied by DAMA and CRESST-II

- •IC-79: IceCube 79 string result from the search for DM annihilation in the Sun
- •M. G. Aartsen et al. [IceCube Collaboration], Phys. Rev. Lett. 110, 131302 (2013)

Track events $\Psi_{max}=2^{\circ}$

 $<\sigma v>=3\times10^{-26} \text{cm}^3 \text{s}^{-1}$

Cascade events Ψ_{max}=50°

One can probe $\langle \sigma v \rangle$ to values much smaller than $3 \times 10^{-26} \text{cm}^3 \text{s}^{-1}$ if $\sigma^{\text{SI}}_{\text{p}}$ js given by DAMA or CRESST-II

- •Cascade events with ψ_{max}=50°
- •Upper limits of $\langle \sigma v \rangle$ with $\sigma^{\rm Si}_{\rm p}$ ranges given by DAMA or CRESST-II

 $b\overline{b}$ final state

•Track events with ψ_{max}=5°

 $au^+ au^-$ final state

 Muon neutrinos in this mode comes from tau lepton decays or oscillations from tau neutrinos

Scenario B: Probing $<\sigma v>$ with XENON100 bound on σ^{SI}_{p} as input

 $\psi_{\text{max}} = 5^{\circ}$

- •Challenging for cascade Events; however, see R. Auer, Nucl. Instrum. Methods Phys. Res., Sect. A 602,84 (2009).
- •Green region: AMS02+ PAMELA preferred region

ψ_{max}=50°
Only monochromatic channels remain

 $\chi\chi \rightarrow \tau^+\tau^-$ from galactic center produces cascade events—
sensitive to AMS02+
PAMELA region

S. K. Mandal et al., Phys. Rev. D81, 043508 (2010)

IceCube new results on DM search
M. G. Aartsen *et al.*, arxiv: 1307.3473 [astro-ph.HE]

Scenario C: assuming non-detection by XENON1T

 $E_{\rm th}$ =10 GeV $\chi\chi \to \nu_{\tau} \overline{\nu}_{\tau}$ not shown Only monochromatic channels remain

E_{th}=100 GeV

Summary:

- With $\langle \sigma v \rangle = 3 \times 10^{-26} \, \text{cm}^3 \text{s}^{-1}$, search for neutrinos produced by DM annihilation in the Earth core gives better limit on σ^{SI}_{p} than the current IC-79 search for DM induced neutrinos from the Sun.
- Taking DAMA and CRESST-II preferred regions as inputs for $\sigma^{\rm SI}_{\rm p}$, one can probe $\langle \sigma(\chi\chi \to \tau^+\tau^-)v \rangle$ to $10^{-32} {\rm cm}^3 {\rm s}^{-1}$ and $\langle \sigma(\chi\chi \to b\bar{b})v \rangle$ to $10^{-31} {\rm cm}^3 {\rm s}^{-1}$ for m_χ at Iron resonance.
- Taking XENON100(2012) upper limit as input for σ^{SI}_{p} , one can probe $\langle \sigma(\chi\chi \to \tau^{+}\tau^{-})\nu \rangle$ into the region favored by PAMELA and AMS02, but the limit is not as strong as the galactic search.

Summary:

• Taking XENON1T upper limit as input for $\sigma^{\rm SI}_{\rm p}$, one can only probe monochromatic channel $\langle \sigma(\chi\chi \to v\overline{v})v \rangle$