Studies of Soft-QCD at LHCb

Marco Meissner
Physikalisches Institut, Heidelberg University
on behalf of the LHCb collaboration
Introduction

Recent QCD studies which are presented in this talk:

- Energy Flow measurement
- Prompt Hadron Ratios
- Prompt Charm production

LHCb has great potential for Soft-QCD measurements

- Excellent vertex resolution & coverage of backwards tracks
- Particle ID from Ring Imaging Cherenkov detectors
- Unique pseudorapidity coverage at the LHC (2 < \eta < 5)
Energy Flow

Energy Flow (EF): \[
\frac{1}{N_{\text{int}}} \frac{dE_{\text{total}}}{d\eta} = \frac{1}{\Delta \eta} \left(\frac{1}{N_{\text{int}}} \sum_{i=1}^{N_{\text{part,}\eta}} E_{i,\eta} \right)
\]

- Energy Flow at large pseudorapidity probes multi-parton-interactions (MPI) & parton radiation
- MPI describes the structure of the underlying event
- Valuable input for generator tunings

Comparison to *PYTHIA* and *cosmic-ray* event generators

Energy Flow measured in 4 different event classes:

- **Inclusive minimum-bias:** at least 1 track in \(1.9 < \eta < 4.9 \) and \(p > 2 \) GeV
- **Hard- scattering:** at least 1 track in \(1.9 < \eta < 4.9 \) and \(p_T > 3 \) GeV
- **Diffractive enriched:** no tracks in \(-3.5 < \eta < -1.5 \)
- **Non-diffractive enriched:** at least 1 track in \(-3.5 < \eta < -1.5 \) \{Large rapidity gap for diffractive processes\}
Energy Flow

Total EF = (charged + neutral) EF

- Energy Flow increases with larger momentum transfer:
 \(EF_{\text{hard}} > EF_{\text{non-diff}} > EF_{\text{incl}} > EF_{\text{diff}} \)

- Uncertainties dominated by systematics
- Uncertainties decrease towards larger \(\eta \)

Compared to PYTHIA predictions

- **PYTHIA 6 tunes:**
 - for all samples the EF is
 - \(-> \) overestimated at small \(\eta \)
 - \(-> \) underestimated at large \(\eta \)
- **PYTHIA 8 tunes:**
 - EF in all samples is well described at large \(\eta \), except for hard scattering
Compared to cosmic-ray generators (not tuned to LHC data!)

- EPOS & SYBILL
 - good description of minimum-bias and non-diffractive events

- QGSJET models
 - overestimated EF in minimum-bias and non-diffractive events, but good description of hard scattering

- Best description by SYBILL

- All models underestimate EF in the diffractive sample

input for PYTHIA & cosmic-ray generators!
Prompt Hadron Ratios

Analyzed data: 0.3nb⁻¹ at \(\sqrt{s} = 0.9 \)TeV and 1.8nb⁻¹ at \(\sqrt{s} = 7 \)TeV

Measured ratios as function of \(\eta \) and \(p_T \):

Same-particles \(\frac{K^-}{K^+}, \frac{\pi^-}{\pi^+}, \frac{\bar{p}}{p} \)

Different-particles \(\frac{p+\bar{p}}{\pi^++\pi^-}, \frac{K^++K^-}{\pi^++\pi^-}, \frac{p+\bar{p}}{K^++K^-} \)

- \(\frac{\bar{p}}{p} \) is an observable to test baryon number transport

- All ratios are probes for hadronisation models
 - import input of generator optimization

 - PID efficiencies from data using resonances: \(K^0_s \rightarrow \pi\pi, \phi \rightarrow KK \) and \(\Lambda \rightarrow p\pi \)
 - Dominant systematic uncertainty from PID due to limited calibration sample size
Same-particle ratios

\[\frac{K^-}{K^+} \]

\[\frac{\sqrt{s} = 0.9 \text{ TeV}}{\sqrt{s} = 7 \text{ TeV}} \]

\[\frac{\sqrt{s} = 0.9 \text{ TeV}}{\sqrt{s} = 7 \text{ TeV}} \]

\[\frac{\pi^-}{\pi^+} \]

Ratios close to unity

In general, \(\frac{K^-}{K^+} \) and \(\frac{\pi^-}{\pi^+} \) well described by tested PYTHIA generator tunes

Same-particle ratios

- For 0.9 TeV \bar{p}/p shows significant η dependence, model with extreme baryon number transport (NOCR) favored
- For 7 TeV Perugia0 and LHCb tune better than NOCR tune
- \bar{p}/p as function of rapidity loss: consistent results, much better precision
- Fit to LHCb & ALICE data: *Regge model* of baryon transport

\[\sqrt{s} = 0.9 \text{ TeV} \]
\[\sqrt{s} = 7 \text{ TeV} \]

\[\frac{\bar{p}}{p} \]

Rapidity loss $\Delta y = y_{beam} - y$
\[y_{beam} = 8.9 \ (6.9) \text{ at } \sqrt{s} = 7 \ (0.9) \text{ TeV} \]
Different-particle ratios

\[\frac{p + \bar{p}}{\pi^+ + \pi^-} \]

\[\sqrt{s} = 0.9 \text{ TeV} \]

\[\sqrt{s} = 7 \text{ TeV} \]

\[\frac{K^+ + K^-}{\pi^+ + \pi^-} \]

\[\sqrt{s} = 0.9 \text{ TeV} \]

\[\sqrt{s} = 7 \text{ TeV} \]

- Large discrepancies to Perugia0 and Perugia NOCR tunes
- LHCb tune is fine

- In general, no model is able to describe the whole measurements

• $\sqrt{s} = 7\text{TeV}$ data set, $\mathcal{L}=0.15nb^{-1}$

• Fiducial region: $2.0 < \eta < 4.5$; $0 < p_T < 8\text{ GeV}$

• Use fully reconstructed decays of prompt charm hadrons: $D^0, D^+, D^{*+}, D_s^+\text{ and } \Lambda_c^+$

• PID efficiencies from data using $K_S^0, \phi\text{ and } \Lambda$ decays

• Prompt signal yield gained from multidimensional extended maximum likelihood fit (mass + IP distribution)

Cross-section measurement tests QCD fragmentation and hadronisation models
Prompt Charm Production

Differential cross-sections compared to theoretical expectations, which reproduce Tevatron & ALICE measurements in central rapidity region

- Fixed order with next to leading-log resummation (FONLL) using CTEQ 6.6
- NLO calculation in the Generalized Mass Variable Flavour Number Scheme (GMVFNS) using CTEQ 6.5 and CTEQ 6.5c2 (intrinsic charm)

- Good agreement with our measurement
- Effect of intrinsic charm is predicted to be small in this phase space region
Prompt Charm Production

Good agreement in these modes as well

Total charm cross-section* ($p_T<8$GeV, $2.0<\eta<4.5$):

\[\sigma(c\bar{c}) = 1419\pm12\text{(stat)}\pm116\text{(syst)}\pm65\text{(frag)} \mu b \]

* Combination of bins where rel. precision < 50%, otherwise using extrapolation based on Pythia tunes (Perugia0, PerugiaNOCR, Perugia2010 & LHCb tune)
LHCb allows Soft-QCD precision studies in unique kinematic range at the LHC

- measurements performed for $\sqrt{s} = 0.9$ and 7 TeV pp data:
 - Energy Flow measurements give input to generators tunings and MPI / underlying event models
 - Prompt hadron ratios test baryon number transport and hadronisation
 - Prompt charm production probes hadronisation and fragmentation models

- Measurements will be supplemented with pp data at $\sqrt{s} = 2.76$ and 8 TeV

- Large data set of Proton-Ion (pPb / Pbp) data at $\sqrt{s_{NN}} = 5$ TeV is currently analyzed
 - particle production, particle ratios, charge ratios, meson production, particle correlations etc...

Stay tuned for new results!
Charged Energy Flow
Energy Flow

Charged Energy Flow

![Graphs showing charged energy flow data and simulations for different event types.](image)

- Inclusive minbias events
- Hard scattering events
- Diffractive enriched events
- Non-diffractive enriched events

Data
- EPOS 1.99
- QGSJET01
- QGSJETII-03
- SIBYLL 2.1

MC/Data
- Systematic Uncertainty
Different-particle ratios

\[\frac{(p + \bar{p})}{(K^+ + K^-)} \]

\(\sqrt{s} = 0.9 \text{ TeV} \)

\(\sqrt{s} = 7 \text{ TeV} \)
Prompt charm production in pp collisions at $\sqrt{s} = 7$TeV

$D^0 \rightarrow K^- \pi^+$

$D^{*+} \rightarrow D^0(K^- \pi^+)\pi^+$

$\Lambda_c^+ \rightarrow p K^- \pi^+$

$D^+ \rightarrow K^- \pi^+ \pi^+$

$D_s^+ \rightarrow \phi(K^- K^+)\pi^+$
Prompt charm production in pp collisions at $\sqrt{s} = 7\text{ TeV}$

$D^0 \rightarrow K^- \pi^+$

$D^{*+} \rightarrow D^0 (K^- \pi^+) \pi^+$

$\Lambda_c^+ \rightarrow p K^- \pi^+$

$D^+ \rightarrow K^- \pi^+ \pi^+$

$D_s^+ \rightarrow \phi (K^- K^+) \pi^+$
PYTHIA tunes

Non default PyTHIA parameters in the LHCb simulation software

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>CKIN(41)</td>
<td>3.0</td>
<td>PARP(86)</td>
<td>0.66</td>
</tr>
<tr>
<td>MSTP(2)</td>
<td>2</td>
<td>PARP(89)</td>
<td>14000</td>
</tr>
<tr>
<td>MSTP(33)</td>
<td>3</td>
<td>PARP(90)</td>
<td>0.238</td>
</tr>
<tr>
<td>MSTP(81)</td>
<td>21</td>
<td>PARP(91)</td>
<td>1.0</td>
</tr>
<tr>
<td>MSTP(82)</td>
<td>3</td>
<td>PARP(149)</td>
<td>0.02</td>
</tr>
<tr>
<td>MSTP(52)</td>
<td>2</td>
<td>PARP(150)</td>
<td>0.085</td>
</tr>
<tr>
<td>MSTP(51)</td>
<td>10042</td>
<td>PARJ(11)</td>
<td>0.5</td>
</tr>
<tr>
<td>MSTP(142)</td>
<td>2</td>
<td>PARJ(12)</td>
<td>0.4</td>
</tr>
<tr>
<td>PARP(67)</td>
<td>1</td>
<td>PARJ(13)</td>
<td>0.79</td>
</tr>
<tr>
<td>PARP(82)</td>
<td>4.28</td>
<td>PARJ(14)</td>
<td>0.0</td>
</tr>
<tr>
<td>PARP(85)</td>
<td>0.33</td>
<td>PARJ(15)</td>
<td>0.018</td>
</tr>
<tr>
<td>MSTJ(26)</td>
<td>0</td>
<td>PARJ(16)</td>
<td>0.054</td>
</tr>
<tr>
<td>PARJ(33)</td>
<td>0.4</td>
<td>PARJ(17)</td>
<td>0.131</td>
</tr>
</tbody>
</table>

Perugia0 corresponding PyTHIA parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>CKIN(41)</td>
<td>12.</td>
<td>PARP(86)</td>
<td>0.95</td>
</tr>
<tr>
<td>MSTP(2)</td>
<td>1</td>
<td>PARP(89)</td>
<td>1800</td>
</tr>
<tr>
<td>MSTP(33)</td>
<td>0</td>
<td>PARP(90)</td>
<td>0.25</td>
</tr>
<tr>
<td>MSTP(81)</td>
<td>11</td>
<td>PARP(91)</td>
<td>2.0</td>
</tr>
<tr>
<td>MSTP(82)</td>
<td>4</td>
<td>PARP(149)</td>
<td>0.48</td>
</tr>
<tr>
<td>MSTP(52)</td>
<td>1</td>
<td>PARP(150)</td>
<td>0.09</td>
</tr>
<tr>
<td>MSTP(51)</td>
<td>7</td>
<td>PARJ(11)</td>
<td>0.5</td>
</tr>
<tr>
<td>MSTP(142)</td>
<td>0</td>
<td>PARJ(12)</td>
<td>0.56</td>
</tr>
<tr>
<td>PARP(67)</td>
<td>4</td>
<td>PARJ(13)</td>
<td>0.75</td>
</tr>
<tr>
<td>PARP(82)</td>
<td>2.0</td>
<td>PARJ(14)</td>
<td>0.0</td>
</tr>
<tr>
<td>PARP(85)</td>
<td>0.9</td>
<td>PARJ(15)</td>
<td>0.0</td>
</tr>
<tr>
<td>MSTJ(26)</td>
<td>2</td>
<td>PARJ(16)</td>
<td>0.0</td>
</tr>
<tr>
<td>PARJ(33)</td>
<td>0.8</td>
<td>PARJ(17)</td>
<td>0.0</td>
</tr>
</tbody>
</table>

PARP(82): UE IR cutoff at reference ecm, Pythia 0: 3.4 Pythia NOCR: 3.19
PARP(89): Reference ecm
PARP(90): UE IR cutoff ecm scaling power